CONditionals for Ordinal Regression and classification in PyTorch

Overview

CONDOR pytorch implementation for ordinal regression with deep neural networks.

Continuous Integration License Python 3


Documentation: https://GarrettJenkinson.github.io/condor_pytorch


About

CONDOR, short for CONDitionals for Ordinal Regression, is a method for ordinal regression with deep neural networks, which addresses the rank inconsistency issue of other ordinal regression frameworks.

It is compatible with any state-of-the-art deep neural network architecture, requiring only modification of the output layer, the labels, the loss function.

This repository implements the CONDOR functionality (neural network layer, loss function, and dataset utilities) for convenient use. Examples are provided via the "Tutorials" that can be found on the documentation website at https://GarrettJenkinson.github.io/condor_pytorch.

We also have CONDOR implemented for Tensorflow.


Installation or Docker


You can install the latest stable release of condor_pytorch directly from Python's package index via pip by executing the following code from your command line:

pip install condor-pytorch

We also provide Dockerfile's to help get up and started quickly with condor_pytorch. The cpu image can be built and ran as follows, with tutorial jupyter notebooks built in.

# Create a docker image, only done once
docker build -t cpu_pytorch -f cpu.Dockerfile ./

# run image to serve a jupyter notebook
docker run -it -p 8888:8888 --rm cpu_pytorch

# how to run bash inside container (with python that will have deps)
docker run -u $(id -u):$(id -g) -it -p 8888:8888 --rm cpu_pytorch bash

An NVIDIA based gpu optimized container can be built and run as follows (without interactive ipynb capabilities).

# only needs to be built once
docker build -t gpu_pytorch -f gpu.Dockerfile ./

# use the image after building it
docker run -it -p 8888:8888 --rm gpu_pytorch

Cite as

If you use CONDOR as part of your workflow in a scientific publication, please consider citing the CONDOR repository with the following DOI:

@article{condor2021,
title = "Universally rank consistent ordinal regression in neural networks",
journal = "arXiv",
volume = "2110.07470",
year = "2021",
url = "https://arxiv.org/abs/2110.07470",
author = "Garrett Jenkinson and Kia Khezeli and Gavin R. Oliver and John Kalantari and Eric W. Klee",
keywords = "Deep learning, Ordinal regression, neural networks, Machine learning, Biometrics"
}
You might also like...
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types

To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types, from a Database Taken From Dr. Wolberg reports his Clinic Cases.

Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Code for
Code for "3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop"

PyMAF This repository contains the code for the following paper: 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop Hongwe

A very short and easy implementation of Quantile Regression DQN
A very short and easy implementation of Quantile Regression DQN

Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx

Source code and Dataset creation for the paper "Neural Symbolic Regression That Scales"

NeuralSymbolicRegressionThatScales Pytorch implementation and pretrained models for the paper "Neural Symbolic Regression That Scales", presented at I

[TIP 2021] SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction
[TIP 2021] SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction

SADRNet Paper link: SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction Requirements python

Regression Metrics Calculation Made easy for tensorflow2 and scikit-learn

Regression Metrics Installation To install the package from the PyPi repository you can execute the following command: pip install regressionmetrics I

Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning

advantage-weighted-regression Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning, by Peng et al. (

Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible

Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible, to be the most reliable with the least complexity possible

Comments
  • src edits

    src edits

    Summary of edits:

    • added device as an argument of the functions to make them compatible when GPUs are used.
    • replaced torch.tile with repeat as it is unavailable in some versions of PyTorch.
    • worked with log probabilities and cumulative sum instead of product for numerical stability of ordinal_softmax
    opened by kolmogorov01 0
Releases(v1.1.0)
πŸ”₯ TensorFlow Code for technical report: "YOLOv3: An Incremental Improvement"

πŸ†• Are you looking for a new YOLOv3 implemented by TF2.0 ? If you hate the fucking tensorflow1.x very much, no worries! I have implemented a new YOLOv

3.6k Dec 26, 2022
Spatial color quantization in Rust

rscolorq Rust port of Derrick Coetzee's scolorq, based on the 1998 paper "On spatial quantization of color images" by Jan Puzicha, Markus Held, Jens K

Collyn O'Kane 37 Dec 22, 2022
Make a Turtlebot3 follow a figure 8 trajectory and create a robot arm and make it follow a trajectory

HW2 - ME 495 Overview Part 1: Makes the robot move in a figure 8 shape. The robot starts moving when launched on a real turtlebot3 and can be paused a

Devesh Bhura 0 Oct 21, 2022
This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the time series forecasting research space.

TSForecasting This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the tim

Rakshitha Godahewa 80 Dec 30, 2022
PyTorch implementation of the paper The Lottery Ticket Hypothesis for Object Recognition

LTH-ObjectRecognition The Lottery Ticket Hypothesis for Object Recognition Sharath Girish*, Shishira R Maiya*, Kamal Gupta, Hao Chen, Larry Davis, Abh

16 Feb 06, 2022
Sequential Model-based Algorithm Configuration

SMAC v3 Project Copyright (C) 2016-2018 AutoML Group Attention: This package is a reimplementation of the original SMAC tool (see reference below). Ho

AutoML-Freiburg-Hannover 778 Jan 05, 2023
Kohei's 5th place solution for xview3 challenge

xview3-kohei-solution Usage This repository assumes that the given data set is stored in the following locations: $ ls data/input/xview3/*.csv data/in

Kohei Ozaki 2 Jan 17, 2022
TransCD: Scene Change Detection via Transformer-based Architecture

TransCD: Scene Change Detection via Transformer-based Architecture

wangzhixue 29 Dec 11, 2022
The fundamental package for scientific computing with Python.

NumPy is the fundamental package needed for scientific computing with Python. Website: https://www.numpy.org Documentation: https://numpy.org/doc Mail

NumPy 22.4k Jan 09, 2023
Code for our paper "Multi-scale Guided Attention for Medical Image Segmentation"

Medical Image Segmentation with Guided Attention This repository contains the code of our paper: "'Multi-scale self-guided attention for medical image

Ashish Sinha 394 Dec 28, 2022
MNE: Magnetoencephalography (MEG) and Electroencephalography (EEG) in Python

MNE-Python MNE-Python software is an open-source Python package for exploring, visualizing, and analyzing human neurophysiological data such as MEG, E

MNE tools for MEG and EEG data analysis 2.1k Dec 28, 2022
A Closer Look at Reference Learning for Fourier Phase Retrieval

A Closer Look at Reference Learning for Fourier Phase Retrieval This repository contains code for our NeurIPS 2021 Workshop on Deep Learning and Inver

Tobias Uelwer 1 Oct 28, 2021
A Python Package for Portfolio Optimization using the Critical Line Algorithm

PyCLA A Python Package for Portfolio Optimization using the Critical Line Algorithm Getting started To use PyCLA, clone the repo and install the requi

19 Oct 11, 2022
Implementation of the paper ''Implicit Feature Refinement for Instance Segmentation''.

Implicit Feature Refinement for Instance Segmentation This repository is an official implementation of the ACM Multimedia 2021 paper Implicit Feature

Lufan Ma 17 Dec 28, 2022
This repository for project that can Automate Number Plate Recognition (ANPR) in Morocco Licensed Vehicles. πŸ’» + πŸš™ + πŸ‡²πŸ‡¦ = πŸ€– πŸ•΅πŸ»β€β™‚οΈ

MoroccoAI Data Challenge (Edition #001) This Reposotory is result of our work in the comepetiton organized by MoroccoAI in the context of the first Mo

SAFOINE EL KHABICH 14 Oct 31, 2022
Leveraging OpenAI's Codex to solve cornerstone problems in Music

Music-Codex Leveraging OpenAI's Codex to solve cornerstone problems in Music Please NOTE: Presented generated samples were created by OpenAI's Codex P

Alex 2 Mar 11, 2022
IOT: Instance-wise Layer Reordering for Transformer Structures

Introduction This repository contains the code for Instance-wise Ordered Transformer (IOT), which is introduced in the ICLR2021 paper IOT: Instance-wi

IOT 19 Nov 15, 2022
Python Auto-ML Package for Tabular Datasets

Tabular-AutoML AutoML Package for tabular datasets Tabular dataset tuning is now hassle free! Run one liner command and get best tuning and processed

Sagnik Roy 18 Nov 20, 2022
End-to-End Object Detection with Fully Convolutional Network

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

472 Dec 22, 2022
Unofficial reimplementation of ECAPA-TDNN for speaker recognition (EER=0.86 for Vox1_O when train only in Vox2)

Introduction This repository contains my unofficial reimplementation of the standard ECAPA-TDNN, which is the speaker recognition in VoxCeleb2 dataset

Tao Ruijie 277 Dec 31, 2022