A modular, research-friendly framework for high-performance and inference of sequence models at many scales

Related tags

Deep Learningt5x
Overview

T5X

T5X is a modular, composable, research-friendly framework for high-performance, configurable, self-service training, evaluation, and inference of sequence models (starting with language) at many scales.

It is essentially a new and improved implementation of the T5 codebase (based on Mesh TensorFlow) in JAX and Flax.

Installation

Note that all the commands in this document should be run in the commandline of the TPU VM instance unless otherwise stated.

  1. Follow the instructions to set up a Google Cloud Platform (GCP) account and enable the Cloud TPU API.

    Note: While T5X works with GPU as well, we haven't heavily tested the GPU usage.

  2. Create a Cloud TPU VM instance following this instruction. We recommend that you develop your workflow in a single v3-8 TPU (i.e., --accelerator-type=v3-8) and scale up to pod slices once the pipeline is ready. In this README, we focus on using a single v3-8 TPU. See here to learn more about TPU architectures.

  3. With Cloud TPU VMs, you ssh directly into the host machine of the TPU VM. You can install packages, run your code run, etc. in the host machine. Once the TPU instance is created, ssh into it with

    gcloud alpha compute tpus tpu-vm ssh ${TPU_NAME} --zone=${ZONE}

    where TPU_NAME and ZONE are the name and the zone used in step 2.

  4. Install T5X and the dependencies. JAX and Gin-config need to be installed from the source.

    git clone --branch=main https://github.com/google-research/t5x
    cd t5x
    
    python3 -m pip install -e . -f \
      https://storage.googleapis.com/jax-releases/libtpu_releases.html
    
  5. Create toogle Cloud Storage (GCS) bucket to store the dataset and model checkpoints. To create a GCS bucket, see these instructions.

Example: English to German translation

As a running example, we use the WMT14 En-De translation. The raw dataset is available in TensorFlow Datasets as "wmt_t2t_translate".

T5 casts the translation task such as the following

{'en': 'That is good.', 'de': 'Das ist gut.'}

to the form called "text-to-text":

{'inputs': 'translate English to German: That is good.', 'targets': 'Das ist gut.'}

This formulation allows many different classes of language tasks to be expressed in a uniform manner and a single encoder-decoder architecture can handle them without any task-specific parameters. For more detail, refer to the T5 paper (Raffel et al. 2019).

For a scalable data pipeline and an evaluation framework, we use SeqIO, which was factored out of the T5 library. A seqio.Task packages together the raw dataset, vocabulary, preprocessing such as tokenization and evaluation metrics such as BLEU and provides a tf.data instance.

The T5 library provides a number of seqio.Tasks that were used in the T5 paper. In this example, we use wmt_t2t_ende_v003.

Training

To run a training job, we use the t5x/train.py script.

# Model dir to save logs, ckpts, etc. in "gs://model_dir" format.
MODEL_DIR="..."

# Data dir to save the processed dataset in "gs://data_dir" format.
TFDS_DATA_DIR="..."
T5X_DIR="..."  # directory where the T5X repo is cloned.

python3 ${T5X_DIR}/t5x/train.py \
  --gin_file="t5x/examples/t5/t5_1_1/examples/t5_1_1_base_wmt_from_scratch.gin" \
  --gin.MODEL_DIR="'${MODEL_DIR}'" \
  --tfds_data_dir=${TFDS_DATA_DIR}

The configuration for this training run is defined in the Gin file t5_1_1_base_wmt_from_scratch.gin. Gin-config is a library to handle configurations based on dependency injection. Among many benefits, Gin allows users to pass custom components such as a custom model to the T5X library without having to modify the core library. The custom components section shows how this is done.

While the core library is independent of Gin, it is central to the examples we provide. Therefore, we provide a short introduction to Gin in the context of T5X. All the configurations are written to a file "config.gin" in MODEL_DIR. This makes debugging as well as reproducing the experiment much easier.

In addition to the config.json, model-info.txt file summarizes the model parameters (shape, names of the axes, partitioning info) as well as the optimizer states.

TensorBoard

To monitor the training in TensorBoard, it is much easier (due to authentification issues) to launch the TensorBoard on your own machine and not in the TPU VM. So in the commandline where you ssh'ed into the TPU VM, launch the TensorBoard with the logdir pointing to the MODEL_DIR.

# NB: run this on your machine not TPU VM!
MODEL_DIR="..."  # Copy from the TPU VM.
tensorboard --logdir=${MODEL_DIR}

Or you can launch the TensorBoard inside a Colab. In a Colab cell, run

from google.colab import auth
auth.authenticate_user()

to authorize the Colab to access the GCS bucket and launch the TensorBoard.

%load_ext tensorboard
model_dir = "..."  # Copy from the TPU VM.
%tensorboard --logdir=model_dir

TODO(hwchung): Add tfds preparation instruction

Fine-tuning

We can leverage the benefits of self-supervised pre-training by initializing from one of our pre-trained models. Here we use the T5.1.1 Base checkpoint.

# Model dir to save logs, ckpts, etc. in "gs://model_dir" format.
MODEL_DIR="..."

# Data dir to save the processed dataset in "gs://data_dir" format.
TFDS_DATA_DIR="..."
T5X_DIR="..."  # directory where the T5X repo is cloned.

python3 ${T5X_DIR}/t5x/train.py \
  --gin_file="t5x/examples/t5/t5_1_1/examples/t5_1_1_base_wmt_finetune.gin" \
  --gin.MODEL_DIR="'${MODEL_DIR}'" \
  --tfds_data_dir=${TFDS_DATA_DIR}

Note: when supplying a string, dict, list, tuple value, or a bash variable via a flag, you must put it in quotes. In the case of strings, it requires "triple quotes" ("' '" ). For example: --gin.utils.DatasetConfig.split="'validation'" or --gin.MODEL_DIR="'${MODEL_DIR}'".

Gin makes it easy to change a number of configurations. For example, you can change the partitioning.ModelBasedPjitPartitioner.num_partitions (overriding the value in t5_1_1_base_wmt_from_scratch.gin) to chanage the parallelism strategy and pass it as a commandline arg.

--gin.partitioning.ModelBasedPjitPartitioner.num_partitions=8

Evaluation

To run the offline (i.e. without training) evaluation, you can use t5x/eval.py script.

EVAL_OUTPUT_DIR="..."  # directory to write eval output
T5X_DIR="..."  # directory where the t5x is cloned, e.g., ${HOME}"/t5x".
TFDS_DATA_DIR="..."
CHECKPOINT_PATH="..."

python3 ${T5X_DIR}/t5x/eval.py \
  --gin_file="t5x/examples/t5/t5_1_1/examples/t5_1_1_base_wmt_eval.gin" \
  --gin.CHECKPOINT_PATH="'${CHECKPOINT_PATH}'" \
  --gin.EVAL_OUTPUT_DIR="'${EVAL_OUTPUT_DIR}'" \
  --tfds_data_dir=${TFDS_DATA_DIR}

Inference

To run inference, you can use t5x/infer.py script. Here we use the same seqio.Task, but for inference we do not use the targets features other than logging them alongside the prediction in a JSON file.

INFER_OUTPUT_DIR="..."  # directory to write infer output
T5X_DIR="..."  # directory where the t5x is cloned, e.g., ${HOME}"/t5x".
TFDS_DATA_DIR="..."
CHECKPOINT_PATH="..."

python3 ${T5X_DIR}/t5x/infer.py \
  --gin_file="t5x/examples/t5/t5_1_1/examples/t5_1_1_base_wmt_infer.gin" \
  --gin.CHECKPOINT_PATH="'${CHECKPOINT_PATH}'" \
  --gin.INFER_OUTPUT_DIR="'${INFER_OUTPUT_DIR}'" \
  --tfds_data_dir=${TFDS_DATA_DIR}

Custom components

The translation example uses the encoder-decoder model that T5X provides as well as the dataset from the T5 library. This section shows how you can use your own dataset and a model and pass via Gin.

Example: custom dataset in a user directory

For this example, we have the following directory structure with ${HOME}/dir1/user_dir representing a user directory with custom components.

${HOME}
└── dir1
    └── user_dir
        ├── t5_1_1_base_de_en.gin
        └── tasks.py

As an example, let's define a new dataset. Here we use the same Translation dataset but we define the translation task in the opposite direction, i.e., German to English intead of English to German. We define this task in tasks.py

# ${HOME}/dir1/user_dir/tasks.py

import functools
import seqio
import tensorflow_datasets as tfds
from t5.evaluation import metrics
from t5.data import preprocessors

vocabulary = seqio.SentencePieceVocabulary(
    'gs://t5-data/vocabs/cc_all.32000/sentencepiece.model', extra_ids=100)
output_features = {
    'inputs': seqio.Feature(vocabulary=vocabulary),
    'targets': seqio.Feature(vocabulary=vocabulary)
}

seqio.TaskRegistry.add(
    'wmt_t2t_de_en_v003',
    source=seqio.TfdsDataSource(tfds_name='wmt_t2t_translate/de-en:1.0.0'),
    preprocessors=[
        functools.partial(
            preprocessors.translate,
            source_language='de', target_language='en'),
        seqio.preprocessors.tokenize,
        seqio.CacheDatasetPlaceholder(),
        seqio.preprocessors.append_eos_after_trim,
    ],
    metric_fns=[metrics.bleu],
    output_features=output_features)

In the Gin file, most of the settings are equivalent to those used in the En->De example. So we include the Gin file from that example. To use "wmt_t2t_de_en_v003" task we just defined, we need to import the task module "tasks.py". Note that we use a relative path defined with respect to the user directory. This will be specified as a flag.

# ${HOME}/dir1/user_dir/t5_1_1_base_de_en.gin
from __gin__ import dynamic_registration
import tasks  # This imports the task defined in dir1/user_dir/tasks.py.

include "t5x-tmp/t5x/examples/t5/t5_1_1/examples/t5_1_1_base_wmt_from_scratch.gin"
MIXTURE_OR_TASK_NAME = "wmt_t2t_de_en_v003"

Finally, we launch training passing the user directory as a flag gin_search_paths such that the Gin file and python modules can be specified with relative paths.

PROJECT_DIR=${HOME}"/dir1/user_dir"
T5X_DIR="..."  # directory where the t5x is cloned.
TFDS_DATA_DIR="..."
MODEL_DIR="..."
export PYTHONPATH=${PROJECT_DIR}

python3 ${T5X_DIR}/t5x/train.py \
  --gin_search_paths=${PROJECT_DIR} \
  --gin_file="t5_1_1_base_de_en.gin" \
  --gin.MODEL_DIR="'${MODEL_DIR}'" \
  --tfds_data_dir=${TFDS_DATA_DIR}

Released Checkpoints

We release the checkpoints for the T5.1.1 models in a native T5X format.

These are converted from the public Mesh TensorFlow checkpoints .

Compatibility with the Mesh TensorFlow checkpoints

The Mesh TensorFlow checkpoints trained using the T5 library can be directly loaded into T5X. For example, we can rerun the fine-tuning example initializing from the MTF checkpoint by changing the INIT_CHECKPOINT Gin macro.

# Model dir to save logs, ckpts, etc. in "gs://model_dir" format.
MODEL_DIR="..."

# Data dir to save the processed dataset in "gs://data_dir" format.
TFDS_DATA_DIR="..."
T5X_DIR="..."  # directory where the T5X repo is cloned.

python3 ${T5X_DIR}/t5x/train.py \
  --gin_file="t5x/examples/t5/t5_1_1/examples/wmt19_ende_from_scratch.gin" \
  --gin.MODEL_DIR="'${MODEL_DIR}'" \
  --gin.MIXTURE_OR_TASK_NAME="'wmt_t2t_ende_v003'" \
  --gin.INIT_CHECKPOINT="'gs://t5-data/pretrained_models/t5.1.1.base/model.ckpt-1000000'" \
  --tfds_data_dir=${TFDS_DATA_DIR}

Note that restoring directly from the Mesh TensorFlow checkpoints can be inefficient if heavy model parallelism is used for large models. This is because each host loads the entire copy of the model first and then keep only the relevant slices dictated by the model parallelism specification. If you have Mesh TensorFlow checkpoints that you run often, we recommend converting the checkpoints to T5X native format using Checkpointer.convert_from_tf_checkpoint.

TODO(hwchung): Add a conversion script.

Note

This is not an officially supported Google product

Owner
Google Research
Google Research
NeuroGen: activation optimized image synthesis for discovery neuroscience

NeuroGen: activation optimized image synthesis for discovery neuroscience NeuroGen is a framework for synthesizing images that control brain activatio

3 Aug 17, 2022
FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks

FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks Image Classification Dataset: Google Landmark, COCO, ImageNet Model: Efficient

FedML-AI 62 Dec 10, 2022
Cosine Annealing With Warmup

CosineAnnealingWithWarmup Formulation The learning rate is annealed using a cosine schedule over the course of learning of n_total total steps with an

zhuyun 4 Apr 18, 2022
This repository contains the source codes for the paper AtlasNet V2 - Learning Elementary Structures.

AtlasNet V2 - Learning Elementary Structures This work was build upon Thibault Groueix's AtlasNet and 3D-CODED projects. (you might want to have a loo

Théo Deprelle 123 Nov 11, 2022
Simple Python application to transform Serial data into OSC messages

SerialToOSC-Bridge Simple Python application to transform Serial data into OSC messages. The current purpose is to be a compatibility layer between ha

Division of Applied Acoustics at Chalmers University of Technology 3 Jun 03, 2021
SingleVC performs any-to-one VC, which is an important component of MediumVC project.

SingleVC performs any-to-one VC, which is an important component of MediumVC project. Here is the official implementation of the paper, MediumVC.

谷下雨 26 Dec 28, 2022
GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️

GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️ This repo contains a PyTorch implementation of the original GAT paper ( 🔗 Veličković et

Aleksa Gordić 1.9k Jan 09, 2023
An auto discord account and token generator. Automatically verifies the phone number. Works without proxy. Bypasses captcha.

JOIN DISCORD SERVER https://discord.gg/uAc3agBY FREE HCAPTCHA SOLVING API Discord-Token-Gen An auto discord token generator. Auto verifies phone numbe

3kp 271 Jan 01, 2023
Toward Multimodal Image-to-Image Translation

BicycleGAN Project Page | Paper | Video Pytorch implementation for multimodal image-to-image translation. For example, given the same night image, our

Jun-Yan Zhu 1.4k Dec 22, 2022
EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit

EvoJAX: Hardware-Accelerated Neuroevolution EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit. Built on top of the JA

Google 598 Jan 07, 2023
Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Aviv Gabbay 41 Nov 29, 2022
Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences", CVPR 2021.

HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature fo

Google Interns 50 Dec 21, 2022
VISSL is FAIR's library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.

What's New Below we share, in reverse chronological order, the updates and new releases in VISSL. All VISSL releases are available here. [Oct 2021]: V

Meta Research 2.9k Jan 07, 2023
Unofficial implement with paper SpeakerGAN: Speaker identification with conditional generative adversarial network

Introduction This repository is about paper SpeakerGAN , and is unofficially implemented by Mingming Huang ( 7 Jan 03, 2023

This program can detect your face and add an Christams hat on the top of your head

Auto_Christmas This program can detect your face and add a Christmas hat to the top of your head. just run the Auto_Christmas.py, then you can see the

3 Dec 22, 2021
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022
Unofficial PyTorch implementation of Guided Dropout

Unofficial PyTorch implementation of Guided Dropout This is a simple implementation of Guided Dropout for research. We try to reproduce the algorithm

2 Jan 07, 2022
Code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive Variance

Semi-supervised Deep Kernel Learning This is the code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data

58 Oct 26, 2022
Implement some metaheuristics and cost functions

Metaheuristics This repot implement some metaheuristics and cost functions. Metaheuristics JAYA Implement Jaya optimizer without constraints. Cost fun

Adri1G 1 Mar 23, 2022