Spatial-Temporal Transformer for Dynamic Scene Graph Generation, ICCV2021

Overview

Spatial-Temporal Transformer for Dynamic Scene Graph Generation

Pytorch Implementation of our paper Spatial-Temporal Transformer for Dynamic Scene Graph Generation accepted by ICCV2021. We propose a Transformer-based model STTran to generate dynamic scene graphs of the given video. STTran can detect the visual relationships in each frame.

The introduction video is available now: https://youtu.be/gKpnRU8btLg

GitHub Logo

About the code We run the code on a single RTX2080ti for both training and testing. We borrowed some code from Yang's repository and Zellers' repository.

Usage

We use python=3.6, pytorch=1.1 and torchvision=0.3 in our code. First, clone the repository:

git clone https://github.com/yrcong/STTran.git

We borrow some compiled code for bbox operations.

cd lib/draw_rectangles
python setup.py build_ext --inplace
cd ..
cd fpn/box_intersections_cpu
python setup.py build_ext --inplace

For the object detector part, please follow the compilation from https://github.com/jwyang/faster-rcnn.pytorch We provide a pretrained FasterRCNN model for Action Genome. Please download here and put it in

fasterRCNN/models/faster_rcnn_ag.pth

Dataset

We use the dataset Action Genome to train/evaluate our method. Please process the downloaded dataset with the Toolkit. The directories of the dataset should look like:

|-- action_genome
    |-- annotations   #gt annotations
    |-- frames        #sampled frames
    |-- videos        #original videos

In the experiments for SGCLS/SGDET, we only keep bounding boxes with short edges larger than 16 pixels. Please download the file object_bbox_and_relationship_filtersmall.pkl and put it in the dataloader

Train

You can train the STTran with train.py. We trained the model on a RTX 2080ti:

  • For PredCLS:
python train.py -mode predcls -datasize large -data_path $DATAPATH 
  • For SGCLS:
python train.py -mode sgcls -datasize large -data_path $DATAPATH 
  • For SGDET:
python train.py -mode sgdet -datasize large -data_path $DATAPATH 

Evaluation

You can evaluate the STTran with test.py.

python test.py -m predcls -datasize large -data_path $DATAPATH -model_path $MODELPATH
python test.py -m sgcls -datasize large -data_path $DATAPATH -model_path $MODELPATH
python test.py -m sgdet -datasize large -data_path $DATAPATH -model_path $MODELPATH

Citation

If our work is helpful for your research, please cite our publication:

@inproceedings{cong2021spatial,
  title={Spatial-Temporal Transformer for Dynamic Scene Graph Generation},
  author={Cong, Yuren and Liao, Wentong and Ackermann, Hanno and Rosenhahn, Bodo and Yang, Michael Ying},
  booktitle = {International Conference on Computer Vision (ICCV)},
  year={2021}
  url={https://arxiv.org/abs/2107.12309}
}

Help

When you have any question/idea about the code/paper. Please comment in Github or send us Email. We will reply as soon as possible.

Owner
Yuren Cong
Yuren Cong
Visualizing lattice vibration information from phonon dispersion to atoms (For GPUMD)

Phonon-Vibration-Viewer (For GPUMD) Visualizing lattice vibration information from phonon dispersion for primitive atoms. In this tutorial, we will in

Liangting 6 Dec 10, 2022
MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieva

Introduction This is the source code of our TCSVT 2021 paper "MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieval". Ple

7 Aug 24, 2022
A decent AI that solves daily Wordle puzzles. Works with different websites with similar wordlists,.

Wordle-AI A decent AI that solves daily "Wordle" puzzles. Works with different websites with similar wordlists. When prompted with "Word:" enter the w

Ethan 1 Feb 10, 2022
PyTorch implementation of "A Simple Baseline for Low-Budget Active Learning".

A Simple Baseline for Low-Budget Active Learning This repository is the implementation of A Simple Baseline for Low-Budget Active Learning. In this pa

10 Nov 14, 2022
Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"

Code for paper "Context-self contrastive pretraining for crop type semantic segmentation" Setting up a python environment Follow the instruction in ht

Michael Tarasiou 11 Oct 09, 2022
Open-World Entity Segmentation

Open-World Entity Segmentation Project Website Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia This projec

DV Lab 410 Jan 03, 2023
IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020)

This repo is the official implementation of our paper "Instance Adaptive Self-training for Unsupervised Domain Adaptation". The purpose of this repo is to better communicate with you and respond to y

CVSM Group - email: <a href=[email protected]"> 84 Dec 12, 2022
:fire: 2D and 3D Face alignment library build using pytorch

Face Recognition Detect facial landmarks from Python using the world's most accurate face alignment network, capable of detecting points in both 2D an

Adrian Bulat 6k Dec 31, 2022
Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021]

Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021] Paper: https://arxiv.org/abs/2104.11208 Introduction Despite the significa

76 Dec 07, 2022
Composable transformations of Python+NumPy programsComposable transformations of Python+NumPy programs

Chex Chex is a library of utilities for helping to write reliable JAX code. This includes utils to help: Instrument your code (e.g. assertions) Debug

DeepMind 506 Jan 08, 2023
Training DALL-E with volunteers from all over the Internet using hivemind and dalle-pytorch (NeurIPS 2021 demo)

Training DALL-E with volunteers from all over the Internet This repository is a part of the NeurIPS 2021 demonstration "Training Transformers Together

<a href=[email protected]"> 19 Dec 13, 2022
Draw like Bob Ross using the power of Neural Networks (With PyTorch)!

Draw like Bob Ross using the power of Neural Networks! (+ Pytorch) Learning Process Visualization Getting started Install dependecies Requires python3

Kendrick Tan 116 Mar 07, 2022
General Assembly Capstone: NBA Game Predictor

Project 6: Predicting NBA Games Problem Statement Can I predict the results of NBA games from the back-half of a season from the opening half of the s

Adam Muhammad Klesc 1 Jan 14, 2022
Our solution for SSN Invente 2021's Hackathon

Our solution for SSN Invente 2021's Hackathon. To help maitain godowns in a pristine and safe condition using raspberry pi.

1 Jan 12, 2022
A python module for scientific analysis of 3D objects based on VTK and Numpy

A lightweight and powerful python module for scientific analysis and visualization of 3d objects.

Marco Musy 1.5k Jan 06, 2023
Simple renderer for use with MuJoCo (>=2.1.2) Python Bindings.

Viewer for MuJoCo in Python Interactive renderer to use with the official Python bindings for MuJoCo. Starting with version 2.1.2, MuJoCo comes with n

Rohan P. Singh 62 Dec 30, 2022
Differentiable Quantum Chemistry (only Differentiable Density Functional Theory and Hartree Fock at the moment)

DQC: Differentiable Quantum Chemistry Differentiable quantum chemistry package. Currently only support differentiable density functional theory (DFT)

75 Dec 02, 2022
PyTorch code for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

Salesforce 1.3k Dec 31, 2022
Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy"

Shapeland Simulator Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy" Download the video at https://www.youtube.com/watch?

TouringPlans.com 70 Dec 14, 2022
Official implementation of "Open-set Label Noise Can Improve Robustness Against Inherent Label Noise" (NeurIPS 2021)

Open-set Label Noise Can Improve Robustness Against Inherent Label Noise NeurIPS 2021: This repository is the official implementation of ODNL. Require

Hongxin Wei 12 Dec 07, 2022