A high-performance distributed deep learning system targeting large-scale and automated distributed training.

Overview

HETU

Documentation | Examples

Hetu is a high-performance distributed deep learning system targeting trillions of parameters DL model training, developed by DAIR Lab at Peking University. It takes account of both high availability in industry and innovation in academia, which has a number of advanced characteristics:

  • Applicability. DL model definition with standard dataflow graph; many basic CPU and GPU operators; efficient implementation of more than plenty of DL models and at least popular 10 ML algorithms.

  • Efficiency. Achieve at least 30% speedup compared to TensorFlow on DNN, CNN, RNN benchmarks.

  • Flexibility. Supporting various parallel training protocols and distributed communication architectures, such as Data/Model/Pipeline parallel; Parameter server & AllReduce.

  • Scalability. Deployment on more than 100 computation nodes; Training giant models with trillions of model parameters, e.g., Criteo Kaggle, Open Graph Benchmark

  • Agility. Automatically ML pipeline: feature engineering, model selection, hyperparameter search.

We welcome everyone interested in machine learning or graph computing to contribute codes, create issues or pull requests. Please refer to Contribution Guide for more details.

Installation

  1. Clone the repository.

  2. Prepare the environment. We use Anaconda to manage packages. The following command create the conda environment to be used:conda env create -f environment.yml. Please prepare Cuda toolkit and CuDNN in advance.

  3. We use CMake to compile Hetu. Please copy the example configuration for compilation by cp cmake/config.example.cmake cmake/config.cmake. Users can modify the configuration file to enable/disable the compilation of each module. For advanced users (who not using the provided conda environment), the prerequisites for different modules in Hetu is listed in appendix.

# modify paths and configurations in cmake/config.cmake

# generate Makefile
mkdir build && cd build && cmake ..

# compile
# make all
make -j 8
# make hetu, version is specified in cmake/config.cmake
make hetu -j 8
# make allreduce module
make allreduce -j 8
# make ps module
make ps -j 8
# make geometric module
make geometric -j 8
# make hetu-cache module
make hetu_cache -j 8
  1. Prepare environment for running. Edit the hetu.exp file and set the environment path for python and the path for executable mpirun if necessary (for advanced users not using the provided conda environment). Then execute the command source hetu.exp .

Usage

Train logistic regression on gpu:

bash examples/cnn/scripts/hetu_1gpu.sh logreg MNIST

Train a 3-layer mlp on gpu:

bash examples/cnn/scripts/hetu_1gpu.sh mlp CIFAR10

Train a 3-layer cnn with gpu:

bash examples/cnn/scripts/hetu_1gpu.sh cnn_3_layers MNIST

Train a 3-layer mlp with allreduce on 8 gpus (use mpirun):

bash examples/cnn/scripts/hetu_8gpu.sh mlp CIFAR10

Train a 3-layer mlp with PS on 1 server and 2 workers:

# in the script we launch the scheduler and server, and two workers
bash examples/cnn/scripts/hetu_2gpu_ps.sh mlp CIFAR10

More Examples

Please refer to examples directory, which contains CNN, NLP, CTR, GNN training scripts. For distributed training, please refer to CTR and GNN tasks.

Community

License

The entire codebase is under license

Papers

  1. Xupeng Miao, Lingxiao Ma, Zhi Yang, Yingxia Shao, Bin Cui, Lele Yu, Jiawei Jiang. CuWide: Towards Efficient Flow-based Training for Sparse Wide Models on GPUs. TKDE 2021, ICDE 2021
  2. Xupeng Miao, Xiaonan Nie, Yingxia Shao, Zhi Yang, Jiawei Jiang, Lingxiao Ma, Bin Cui. Heterogeneity-Aware Distributed Machine Learning Training via Partial Reduce. SIGMOD 2021
  3. Xupeng Miao, Hailin Zhang, Yining Shi, Xiaonan Nie, Zhi Yang, Yangyu Tao, Bin Cui. HET: Scaling out Huge Embedding Model Training via Cache-enabled Distributed Framework. VLDB 2022, ChinaSys 2021 Winter.
  4. coming soon

Cite

If you use Hetu in a scientific publication, we would appreciate citations to the following paper:

 @inproceedings{vldb/het22,
   title = {HET: Scaling out Huge Embedding Model Training via Cache-enabled Distributed Framework},
   author = {Xupeng Miao and
         Hailin Zhang and
         Yining Shi and
             Xiaonan Nie and
             Zhi Yang and
             Yangyu Tao and
             Bin Cui},
   journal = {Proc. {VLDB} Endow.},
   year = {2022},
   url  = {https://doi.org/10.14778/3489496.3489511},
   doi  = {10.14778/3489496.3489511},
 }

Acknowledgements

We learned and borrowed insights from a few open source projects including TinyFlow, autodist, tf.distribute and Angel.

Appendix

The prerequisites for different modules in Hetu is listed as follows:

"*" means you should prepare by yourself, while others support auto-download

Hetu: OpenMP(*), CMake(*)
Hetu (version mkl): MKL 1.6.1
Hetu (version gpu): CUDA 10.1(*), CUDNN 7.5(*)
Hetu (version all): both

Hetu-AllReduce: MPI 3.1, NCCL 2.8(*), this module needs GPU version

Hetu-PS: Protobuf(*), ZeroMQ 4.3.2

Hetu-Geometric: Pybind11(*), Metis(*)

Hetu-Cache: Pybind11(*), this module needs PS module

##################################################################
Tips for preparing the prerequisites

Preparing CUDA, CUDNN, NCCL(NCCl is already in conda environment):
1. download from https://developer.nvidia.com
2. install
3. modify paths in cmake/config.cmake if necessary

Preparing OpenMP:
Your just need to ensure your compiler support openmp.

Preparing CMake, Protobuf, Pybind11, Metis:
Install by anaconda: 
conda install cmake=3.18 libprotobuf pybind11=2.6.0 metis

Preparing OpenMPI (not necessary):
install by anaconda: `conda install -c conda-forge openmpi=4.0.3`
or
1. download from https://download.open-mpi.org/release/open-mpi/v4.0/openmpi-4.0.3.tar.gz
2. build openmpi by `./configure /path/to/build && make -j8 && make install`
3. modify MPI_HOME to /path/to/build in cmake/config.cmake

Preparing MKL (not necessary):
install by anaconda: `conda install -c conda-forge onednn`
or
1. download from https://github.com/intel/mkl-dnn/archive/v1.6.1.tar.gz
2. build mkl by `mkdir /path/to/build && cd /path/to/build && cmake /path/to/root && make -j8` 
3. modify MKL_ROOT to /path/to/root and MKL_BUILD to /path/to/build in cmake/config.cmake 

Preparing ZeroMQ (not necessary):
install by anaconda: `conda install -c anaconda zeromq=4.3.2`
or
1. download from https://github.com/zeromq/libzmq/releases/download/v4.3.2/zeromq-4.3.2.zip
2. build zeromq by 'mkdir /path/to/build && cd /path/to/build && cmake /path/to/root && make -j8`
3. modify ZMQ_ROOT to /path/to/build in cmake/config.cmake
Owner
DAIR Lab
Data and Intelligence Research (DAIR) Lab @ Peking University
DAIR Lab
Meta Language-Specific Layers in Multilingual Language Models

Meta Language-Specific Layers in Multilingual Language Models This repo contains the source codes for our paper On Negative Interference in Multilingu

Zirui Wang 20 Feb 13, 2022
Deep Implicit Moving Least-Squares Functions for 3D Reconstruction

DeepMLS: Deep Implicit Moving Least-Squares Functions for 3D Reconstruction This repository contains the implementation of the paper: Deep Implicit Mo

103 Dec 22, 2022
Constrained Language Models Yield Few-Shot Semantic Parsers

Constrained Language Models Yield Few-Shot Semantic Parsers This repository contains tools and instructions for reproducing the experiments in the pap

Microsoft 43 Nov 23, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
Internship Assessment Task for BaggageAI.

BaggageAI Internship Task Problem Statement: You are given two sets of images:- background and threat objects. Background images are the background x-

Arya Shah 10 Nov 14, 2022
An official PyTorch implementation of the TKDE paper "Self-Supervised Graph Representation Learning via Topology Transformations".

Self-Supervised Graph Representation Learning via Topology Transformations This repository is the official PyTorch implementation of the following pap

Hsiang Gao 2 Oct 31, 2022
Matthew Colbrook 1 Apr 08, 2022
Resilient projection-based consensus actor-critic (RPBCAC) algorithm

Resilient projection-based consensus actor-critic (RPBCAC) algorithm We implement the RPBCAC algorithm with nonlinear approximation from [1] and focus

Martin Figura 5 Jul 12, 2022
Pixel Consensus Voting for Panoptic Segmentation (CVPR 2020)

Implementation for Pixel Consensus Voting (CVPR 2020). This codebase contains the essential ingredients of PCV, including various spatial discretizati

Haochen 23 Oct 25, 2022
Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021

Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021 Abstract Recent works have made great success in semantic segmentation by explo

Hanzhe Hu 30 Dec 29, 2022
Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation".

I2V-GAN This repository is the official Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation". Traffic

69 Dec 31, 2022
Deep Anomaly Detection with Outlier Exposure (ICLR 2019)

Outlier Exposure This repository contains the essential code for the paper Deep Anomaly Detection with Outlier Exposure (ICLR 2019). Requires Python 3

Dan Hendrycks 464 Dec 27, 2022
Code release for "Making a Bird AI Expert Work for You and Me".

Making-a-Bird-AI-Expert-Work-for-You-and-Me Code release for "Making a Bird AI Expert Work for You and Me". arxiv (Coming soon...) Changelog 2021/12/6

PRIS-CV: Computer Vision Group 11 Dec 11, 2022
GNPy: Optical Route Planning and DWDM Network Optimization

GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks

Telecom Infra Project 140 Dec 19, 2022
A library for performing coverage guided fuzzing of neural networks

TensorFuzz: Coverage Guided Fuzzing for Neural Networks This repository contains a library for performing coverage guided fuzzing of neural networks,

Brain Research 195 Dec 28, 2022
This code is for eCaReNet: explainable Cancer Relapse Prediction Network.

eCaReNet This code is for eCaReNet: explainable Cancer Relapse Prediction Network. (Towards Explainable End-to-End Prostate Cancer Relapse Prediction

Institute of Medical Systems Biology 2 Jul 28, 2022
Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21

MonoFlex Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21. Work in progress. Installation This repo is tested w

Yunpeng 169 Dec 06, 2022
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Despoina Paschalidou 161 Dec 20, 2022
This provides the R code and data to replicate results in "The USS Trustee’s risky strategy"

USSBriefs2021 This provides the R code and data to replicate results in "The USS Trustee’s risky strategy" by Neil M Davies, Jackie Grant and Chin Yan

1 Oct 30, 2021
PyTorch implementation for Graph Contrastive Learning with Augmentations

Graph Contrastive Learning with Augmentations PyTorch implementation for Graph Contrastive Learning with Augmentations [poster] [appendix] Yuning You*

Shen Lab at Texas A&M University 382 Dec 15, 2022