Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionaries

Overview

Dictionary Learning for Clustering on Hyperspectral Images

Overview

Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionaries. This framework was created as a part of the project I presented for completion of my Computer Science Honours' degree at the University of the Witwatersrand.
A paper was produced for this research, it was published by Springer's Journal of Signal, Image and Video Processing. The paper can be read for free here: https://rdcu.be/b5Vsq. Please look below for citation details.

Authored by: Joshua Bruton
Supervised by: Dr. Hairong Wang

Contents

This repository contains implementations or usage of the following techniques:

  1. Online Dictionary Learning
  2. Orthogonal Matching Pursuit with dynamic stopping criteria
  3. Spectral Clustering (sk-learn)

The repository also contains the SalinasA hyperspectral image. This and other hyperspectral data sets are available on the Grupo de Inteligencia Computacional website here.

Usage

I have created a requirements file. I recommend using pipenv with Python 3.6 to open a shell and then using

pipenv install -r requirements.txt

and requirements should be met. Then just run:

python demonstration.py

and the demonstration should run. It will train a dictionary and then use it for spectral clustering as discussed in the paper.

Previous work

One working discriminative dictionary has been provided in the repository, all of the others are available as assets on Comet.ml. They were all trained using the implementation of ODL provided in this repository. Bare in mind that dictionary learning is extremely sensitive to the initialisation of the dictionary; results for different dictionaries will vary drastically.

scikit-learn was used extensively throughout this project for more stable implementations. Thanks also go to Dave Biagioni, mitscha, and the authors of this article.

Future work

This repository is licensed under the GNU General Public License and therefore is completely free to use for any project you see fit. If you do use or learn from our work, we would appreciate if you cited the following details:

@article{10.1007/s11760-020-01750-z, 
  author = {Bruton, Joshua and Wang, Hairong}, 
  title = {{Dictionary learning for clustering on hyperspectral images}}, 
  issn = {1863-1703}, 
  doi = {10.1007/s11760-020-01750-z},
  pages = {1--7}, 
  journal = {Signal, Image and Video Processing}, 
  year = {2020}
}

Or:
Bruton, J., Wang, H. Dictionary learning for clustering on hyperspectral images. SIViP (2020). https://doi.org/10.1007/s11760-020-01750-z

The paper can be read for free.

Suggestions

If there are any pressing problems with the code please open an issue and I will attend to it as timeously as is possible.

Owner
Joshua Bruton
MSc. Computer Science student at the University of the Witwatersrand. Co-founder of Educess.
Joshua Bruton
Technical Analysis library in pandas for backtesting algotrading and quantitative analysis

bta-lib - A pandas based Technical Analysis Library bta-lib is pandas based technical analysis library and part of the backtrader family. Links Main P

DRo 393 Dec 20, 2022
Face recognition project by matching the features extracted using SIFT.

MV_FaceDetectionWithSIFT Face recognition project by matching the features extracted using SIFT. By : Aria Radmehr Professor : Ali Amiri Dependencies

Aria Radmehr 4 May 31, 2022
Tensors and neural networks in Haskell

Hasktorch Hasktorch is a library for tensors and neural networks in Haskell. It is an independent open source community project which leverages the co

hasktorch 920 Jan 04, 2023
StackNet is a computational, scalable and analytical Meta modelling framework

StackNet This repository contains StackNet Meta modelling methodology (and software) which is part of my work as a PhD Student in the computer science

Marios Michailidis 1.3k Dec 15, 2022
Torch implementation of SegNet and deconvolutional network

Torch implementation of SegNet and deconvolutional network

Fedor Chervinskii 5 Jul 17, 2020
codes for "Scheduled Sampling Based on Decoding Steps for Neural Machine Translation" (long paper of EMNLP-2022)

Scheduled Sampling Based on Decoding Steps for Neural Machine Translation (EMNLP-2021 main conference) Contents Overview Background Quick to Use Furth

Adaxry 13 Jul 25, 2022
A python interface for training Reinforcement Learning bots to battle on pokemon showdown

The pokemon showdown Python environment A Python interface to create battling pokemon agents. poke-env offers an easy-to-use interface for creating ru

Haris Sahovic 184 Dec 30, 2022
This is an official implementation of the paper "Distance-aware Quantization", accepted to ICCV2021.

PyTorch implementation of DAQ This is an official implementation of the paper "Distance-aware Quantization", accepted to ICCV2021. For more informatio

CV Lab @ Yonsei University 36 Nov 04, 2022
Neural Network to colorize grayscale images

#colornet Neural Network to colorize grayscale images Results Grayscale Prediction Ground Truth Eiji K used colornet for anime colorization Sources Au

Pavel Hanchar 3.6k Dec 24, 2022
EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit

EvoJAX: Hardware-Accelerated Neuroevolution EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit. Built on top of the JA

Google 598 Jan 07, 2023
Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX.

snc4onnx Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools 1.

Katsuya Hyodo 8 Oct 13, 2022
Code for the Interspeech 2021 paper "AST: Audio Spectrogram Transformer".

AST: Audio Spectrogram Transformer Introduction Citing Getting Started ESC-50 Recipe Speechcommands Recipe AudioSet Recipe Pretrained Models Contact I

Yuan Gong 603 Jan 07, 2023
A JAX-based research framework for writing differentiable numerical simulators with arbitrary discretizations

jaxdf - JAX-based Discretization Framework Overview | Example | Installation | Documentation ⚠️ This library is still in development. Breaking changes

UCL Biomedical Ultrasound Group 65 Dec 23, 2022
Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
Irrigation controller for Home Assistant

Irrigation Unlimited This integration is for irrigation systems large and small. It can offer some complex arrangements without large and messy script

Robert Cook 176 Jan 02, 2023
Hyperbolic Hierarchical Clustering.

Hyperbolic Hierarchical Clustering (HypHC) This code is the official PyTorch implementation of the NeurIPS 2020 paper: From Trees to Continuous Embedd

HazyResearch 154 Dec 15, 2022
codes for Self-paced Deep Regression Forests with Consideration on Ranking Fairness

Self-paced Deep Regression Forests with Consideration on Ranking Fairness This is official codes for paper Self-paced Deep Regression Forests with Con

Learning in Vision 4 Sep 11, 2022
Pytorch Performace Tuning, WandB, AMP, Multi-GPU, TensorRT, Triton

Plant Pathology 2020 FGVC7 Introduction A deep learning model pipeline for training, experimentaiton and deployment for the Kaggle Competition, Plant

Bharat Giddwani 0 Feb 25, 2022
This project is for a Twitter bot that monitors a bird feeder in my backyard. Any detected birds are identified and posted to Twitter.

Backyard Birdbot Introduction This is a silly hobby project to use existing ML models to: Detect any birds sighted by a webcam Identify whic

Chi Young Moon 71 Dec 25, 2022
Unofficial PyTorch implementation of MobileViT based on paper "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer".

MobileViT RegNet Unofficial PyTorch implementation of MobileViT based on paper MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TR

Hong-Jia Chen 91 Dec 02, 2022