This repository contains the code for the paper "Hierarchical Motion Understanding via Motion Programs"

Overview

Hierarchical Motion Understanding via Motion Programs (CVPR 2021)

Paper

This repository contains the official implementation of:

Hierarchical Motion Understanding via Motion Programs

full paper | short talk | long talk | project webpage

Motion Programs example

Running motion2prog

0. We start with video file and first prepare the input data

$ ffmpeg -i ${video_dir}/video.mp4 ${video_dir}/frames/%05d.jpg
$ python AlphaPose/scripts/demo_inference.py \
    --cfg AlphaPose/pretrained_models/256x192_res50_lr1e-3_1x.yaml \
    --checkpoint AlphaPose/pretrained_models/halpe26_fast_res50_256x192.pth \
    --indir ${video_dir}/frames --outdir ${video_dir}/pose_mpii_track \
    --pose_track --showbox --flip --qsize 256
$ mv ${video_dir}/pose_mpii_track/alphapose-results.json \
    ${video_dir}/alphapose-results-halpe26-posetrack.json

We packaged a demo video with necessary inputs for quickly testing our code

$ wget https://sumith1896.github.io/motion2prog/static/demo.zip
$ mv demo.zip data/  && cd data/ && unzip demo.zip && cd ..
  • We need 2D pose detection results & extracted frames of video (for visualization)

  • We support loading from different pose detector formats in the load function in lkeypoints.py.

  • We used AlphaPose with the above commands for all pose detection results.

Run motion program synthesis pipeline

1. With the data prepared, you can run the synthesis with the following command:

$ python fit.py -d data/demo/276_reg -k coco -a -x -c -p 1 -w 20 --no-acc \
--stat-thres 5 --span-thres 5 --cores 9 -r 1600 -o ./visualization/static/data/demo
  • The various options and their descriptions are explained in the fit.py file.

  • The results can be found under ./visualization/static/data/demo.

Visualizing the synthesized programs

2. We package a visualization server for visualizing the generated programs

$ cd visualization/
$ bash deploy.sh p
  • Open the directed the webpage and browse the results interactively.

Citations

If you find our code or paper useful to your research, please consider citing:

@inproceedings{motion2prog2021,
    Author = {Sumith Kulal and Jiayuan Mao and Alex Aiken and Jiajun Wu},
    Title = {Hierarchical Motion Understanding via Motion Programs},
    booktitle={CVPR},
    year={2021},
}

Checklist

Please open a GitHub issue or contact [email protected] for any issues or questions!

  • Upload pre-processed data used in paper.
  • Add for-loop synthesis layer.

Acknowledgements

We thank Karan Chadha, Shivam Garg and Shubham Goel for helpful discussions. This work is in part supported by Magic Grant from the Brown Institute for Media Innovation, the Samsung Global Research Outreach (GRO) Program, Autodesk, Amazon Web Services, and Stanford HAI for AWS Cloud Credits.

Parts of this repo use materials from SCANimate and fit.

Owner
Sumith Kulal
Insanely passionate about Computer Science.
Sumith Kulal
Revisiting Global Statistics Aggregation for Improving Image Restoration

Revisiting Global Statistics Aggregation for Improving Image Restoration Xiaojie Chu, Liangyu Chen, Chengpeng Chen, Xin Lu Paper: https://arxiv.org/pd

MEGVII Research 128 Dec 24, 2022
FinGAT: A Financial Graph Attention Networkto Recommend Top-K Profitable Stocks

FinGAT: A Financial Graph Attention Networkto Recommend Top-K Profitable Stocks This is our implementation for the paper: FinGAT: A Financial Graph At

Yu-Che Tsai 64 Dec 13, 2022
Cooperative Driving Dataset: a dataset for multi-agent driving scenarios

Cooperative Driving Dataset (CODD) The Cooperative Driving dataset is a synthetic dataset generated using CARLA that contains lidar data from multiple

Eduardo Henrique Arnold 124 Dec 28, 2022
Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimization"

Riggable 3D Face Reconstruction via In-Network Optimization Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimizati

130 Jan 02, 2023
Dataset used in "PlantDoc: A Dataset for Visual Plant Disease Detection" accepted in CODS-COMAD 2020

PlantDoc: A Dataset for Visual Plant Disease Detection This repository contains the Cropped-PlantDoc dataset used for benchmarking classification mode

Pratik Kayal 109 Dec 29, 2022
A more easy-to-use implementation of KPConv

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 35 Dec 14, 2022
This is the source code of the solver used to compete in the International Timetabling Competition 2019.

ITC2019 Solver This is the source code of the solver used to compete in the International Timetabling Competition 2019. Building .NET Core (2.1 or hig

Edon Gashi 8 Jan 22, 2022
Code for Reciprocal Adversarial Learning for Brain Tumor Segmentation: A Solution to BraTS Challenge 2021 Segmentation Task

BRATS 2021 Solution For Segmentation Task This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmenta

Himashi Amanda Peiris 6 Sep 15, 2022
Official PaddlePaddle implementation of Paint Transformer

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Paddle Implementation] Update We have optimized the serial inference p

TianweiLin 284 Dec 31, 2022
git《USD-Seg:Learning Universal Shape Dictionary for Realtime Instance Segmentation》(2020) GitHub: [fig2]

USD-Seg This project is an implement of paper USD-Seg:Learning Universal Shape Dictionary for Realtime Instance Segmentation, based on FCOS detector f

Ruolin Ye 80 Nov 28, 2022
Convex optimization for fun and profit.

CFMM Optimal Routing This repository contains the code needed to generate the figures used in the paper Optimal Routing for Constant Function Market M

Guillermo Angeris 183 Dec 29, 2022
🧮 Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model after All

Accompanying source code to the paper "Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model A

Florian Wilhelm 39 Dec 03, 2022
Energy consumption estimation utilities for Jetson-based platforms

This repository contains a utility for measuring energy consumption when running various programs in NVIDIA Jetson-based platforms. Currently TX-2, NX, and AGX are supported.

OpenDR 10 Jun 17, 2022
DETReg: Unsupervised Pretraining with Region Priors for Object Detection

DETReg: Unsupervised Pretraining with Region Priors for Object Detection Amir Bar, Xin Wang, Vadim Kantorov, Colorado J Reed, Roei Herzig, Gal Chechik

Amir Bar 283 Dec 27, 2022
A simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

this is a simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

crispengari 5 Dec 09, 2021
Pytorch implementation of "Forward Thinking: Building and Training Neural Networks One Layer at a Time"

forward-thinking-pytorch Pytorch implementation of Forward Thinking: Building and Training Neural Networks One Layer at a Time Requirements Python 2.7

Kim Heecheol 65 Oct 06, 2022
Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

RNN-for-Joint-NLU Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

Kim SungDong 194 Dec 28, 2022
Sequence to Sequence Models with PyTorch

Sequence to Sequence models with PyTorch This repository contains implementations of Sequence to Sequence (Seq2Seq) models in PyTorch At present it ha

Sandeep Subramanian 708 Dec 19, 2022
The official repository for "Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds"

Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds The why Im

3 Mar 29, 2022
nfelo: a power ranking, prediction, and betting model for the NFL

nfelo nfelo is a power ranking, prediction, and betting model for the NFL. Nfelo take's 538's Elo framework and further adapts it for the NFL, hence t

6 Nov 22, 2022