Ecommerce product title recognition package

Overview

revizor Test & Lint codecov

This package solves task of splitting product title string into components, like type, brand, model and article (or SKU or product code or you name it).
Imagine classic named entity recognition, but recognition done on product titles.

Install

revizor requires python 3.8+ version on Linux or macOS, Windows isn't supported now, but contributions are welcome.

$ pip install revizor

Usage

from revizor.tagger import ProductTagger

tagger = ProductTagger()
product = tagger.predict("Смартфон Apple iPhone 12 Pro 128 gb Gold (CY.563781.P273)")

assert product.type == "Смартфон"
assert product.brand == "Apple"
assert product.model == "iPhone 12 Pro"
assert product.article == "CY.563781.P273"

Boring numbers

Actually, just output from flair training log:

Corpus: "Corpus: 138959 train + 15440 dev + 51467 test sentences"
Results:
- F1-score (micro) 0.8843
- F1-score (macro) 0.8766

By class:
ARTICLE    tp: 9893 - fp: 1899 - fn: 3268 - precision: 0.8390 - recall: 0.7517 - f1-score: 0.7929
BRAND      tp: 47977 - fp: 2335 - fn: 514 - precision: 0.9536 - recall: 0.9894 - f1-score: 0.9712
MODEL      tp: 35187 - fp: 11824 - fn: 9995 - precision: 0.7485 - recall: 0.7788 - f1-score: 0.7633
TYPE       tp: 25044 - fp: 637 - fn: 443 - precision: 0.9752 - recall: 0.9826 - f1-score: 0.9789

Dataset

Model was trained on automatically annotated corpus. Since it may be affected by DMCA, we'll not publish it.
But we can give hint on how to obtain it, don't we?
Dataset can be created by scrapping any large marketplace, like goods, yandex.market or ozon.
We extract product title and table with product info, then we parse brand and model strings from product info table.
Now we have product title, brand and model. Then we can split product title by brand string, e.g.:

product_title = "Смартфон Apple iPhone 12 Pro 128 Gb Space Gray"
brand = "Apple"
model = "iPhone 12 Pro"

product_type, product_model_plus_some_random_info = product_title.split(brand)

product_type # => 'Смартфон'
product_model_plus_some_random_info # => 'iPhone 12 Pro 128 Gb Space Gray'

License

This package is licensed under MIT license.

Owner
Bureaucratic Labs
We do natural language processing services
Bureaucratic Labs
Implemented shortest-circuit disambiguation, maximum probability disambiguation, HMM-based lexical annotation and BiLSTM+CRF-based named entity recognition

Implemented shortest-circuit disambiguation, maximum probability disambiguation, HMM-based lexical annotation and BiLSTM+CRF-based named entity recognition

0 Feb 13, 2022
MMDA - multimodal document analysis

MMDA - multimodal document analysis

AI2 75 Jan 04, 2023
NLP command-line assistant powered by OpenAI

NLP command-line assistant powered by OpenAI

Axel 16 Dec 09, 2022
Easy-to-use CPM for Chinese text generation

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

382 Jan 07, 2023
An attempt to map the areas with active conflict in Ukraine using open source twitter data.

Live Action Map (LAM) An attempt to use open source data on Twitter to map areas with active conflict. Right now it is used for the Ukraine-Russia con

Kinshuk Dua 171 Nov 21, 2022
Beta Distribution Guided Aspect-aware Graph for Aspect Category Sentiment Analysis with Affective Knowledge. Proceedings of EMNLP 2021

AAGCN-ACSA EMNLP 2021 Introduction This repository was used in our paper: Beta Distribution Guided Aspect-aware Graph for Aspect Category Sentiment An

Akuchi 36 Dec 18, 2022
VMD Audio/Text control with natural language

This repository is a proof of principle for performing Molecular Dynamics analysis, in this case with the program VMD, via natural language commands.

Andrew White 13 Jun 09, 2022
The official implementation of VAENAR-TTS, a VAE based non-autoregressive TTS model.

VAENAR-TTS This repo contains code accompanying the paper "VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis". Sa

THUHCSI 138 Oct 28, 2022
Flaxformer: transformer architectures in JAX/Flax

Flaxformer: transformer architectures in JAX/Flax Flaxformer is a transformer library for primarily NLP and multimodal research at Google. It is used

Google 114 Dec 29, 2022
multi-label,classifier,text classification,多标签文本分类,文本分类,BERT,ALBERT,multi-label-classification,seq2seq,attention,beam search

multi-label,classifier,text classification,多标签文本分类,文本分类,BERT,ALBERT,multi-label-classification,seq2seq,attention,beam search

hellonlp 30 Dec 12, 2022
SimBERT升级版(SimBERTv2)!

RoFormer-Sim RoFormer-Sim,又称SimBERTv2,是我们之前发布的SimBERT模型的升级版。 介绍 https://kexue.fm/archives/8454 训练 tensorflow 1.14 + keras 2.3.1 + bert4keras 0.10.6 下载

317 Dec 23, 2022
Python functions for summarizing and improving voice dictation input.

Helpmespeak Help me speak uses Python functions for summarizing and improving voice dictation input. Get started with OpenAI gpt-3 OpenAI is a amazing

Margarita Humanitarian Foundation 6 Dec 17, 2022
Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Jifan Chen 22 Oct 21, 2022
Sequence Modeling with Structured State Spaces

Structured State Spaces for Sequence Modeling This repository provides implementations and experiments for the following papers. S4 Efficiently Modeli

HazyResearch 902 Jan 06, 2023
Simple python code to fix your combo list by removing any text after a separator or removing duplicate combos

Combo List Fixer A simple python code to fix your combo list by removing any text after a separator or removing duplicate combos Removing any text aft

Hamidreza Dehghan 3 Dec 05, 2022
Neural text generators like the GPT models promise a general-purpose means of manipulating texts.

Boolean Prompting for Neural Text Generators Neural text generators like the GPT models promise a general-purpose means of manipulating texts. These m

Jeffrey M. Binder 20 Jan 09, 2023
Use PaddlePaddle to reproduce the paper:mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer

MT5_paddle Use PaddlePaddle to reproduce the paper:mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer English | 简体中文 mT5: A Massively

2 Oct 17, 2021
TalkNet: Audio-visual active speaker detection Model

Is someone talking? TalkNet: Audio-visual active speaker detection Model This repository contains the code for our ACM MM 2021 paper, TalkNet, an acti

142 Dec 14, 2022
This project uses unsupervised machine learning to identify correlations between daily inoculation rates in the USA and twitter sentiment in regards to COVID-19.

Twitter COVID-19 Sentiment Analysis Members: Christopher Bach | Khalid Hamid Fallous | Jay Hirpara | Jing Tang | Graham Thomas | David Wetherhold Pro

4 Oct 15, 2022
Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统

Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统

wangle 823 Dec 28, 2022