PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer

Related tags

Text Data & NLPxcit
Overview

Cross-Covariance Image Transformer (XCiT)

PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer

Linear complexity in time and memory

Our XCiT models has a linear complexity w.r.t number of patches/tokens:

Peak Memory (inference) Millisecond/Image (Inference)

Scaling to high resolution inputs

XCiT can scale to high resolution inputs both due to cheaper compute requirement as well as better adaptability to higher resolution at test time (see Figure 3 in the paper)

Detection and Instance Segmentation for Ultra high resolution images (6000x4000)

Detection and Instance segmentation result for an ultra high resolution image 6000x4000 )

XCiT+DINO: High Res. Self-Attention Visualization 🦖

Our XCiT models with self-supervised training using DINO can obtain high resolution attention maps.

xcit_dino.mp4

Self-Attention visualization per head

Below we show the attention maps for each of the 8 heads separately and we can observe that every head specializes in different semantic aspects of the scene for the foreground as well as the background.

Multi_head.mp4

Getting Started

First, clone the repo

git clone https://github.com/facebookresearch/XCiT.git

Then, you can install the required packages including: Pytorch version 1.7.1, torchvision version 0.8.2 and Timm version 0.4.8

pip install -r requirements.txt

Download and extract the ImageNet dataset. Afterwards, set the --data-path argument to the corresponding extracted ImageNet path.

For full details about all the available arguments, you can use

python main.py --help

For detection and segmentation downstream tasks, please check:


Model Zoo

We provide XCiT models pre-trained weights on ImageNet-1k.

§: distillation

Models with 16x16 patch size

Arch params Model
224 224 § 384 §
top-1 weights top-1 weights top-1 weights
xcit_nano_12_p16 3M 69.9% download 72.2% download 75.4% download
xcit_tiny_12_p16 7M 77.1% download 78.6% download 80.9% download
xcit_tiny_24_p16 12M 79.4% download 80.4% download 82.6% download
xcit_small_12_p16 26M 82.0% download 83.3% download 84.7% download
xcit_small_24_p16 48M 82.6% download 83.9% download 85.1% download
xcit_medium_24_p16 84M 82.7% download 84.3% download 85.4% download
xcit_large_24_p16 189M 82.9% download 84.9% download 85.8% download

Models with 8x8 patch size

Arch params Model
224 224 § 384 §
top-1 weights top-1 weights top-1 weights
xcit_nano_12_p8 3M 73.8% download 76.3% download 77.8% download
xcit_tiny_12_p8 7M 79.7% download 81.2% download 82.4% download
xcit_tiny_24_p8 12M 81.9% download 82.6% download 83.7% download
xcit_small_12_p8 26M 83.4% download 84.2% download 85.1% download
xcit_small_24_p8 48M 83.9% download 84.9% download 85.6% download
xcit_medium_24_p8 84M 83.7% download 85.1% download 85.8% download
xcit_large_24_p8 189M 84.4% download 85.4% download 86.0% download

XCiT + DINO Self-supervised models

Arch params k-nn linear download
xcit_small_12_p16 26M 76.0% 77.8% backbone
xcit_small_12_p8 26M 77.1% 79.2% backbone
xcit_medium_24_p16 84M 76.4% 78.8% backbone
xcit_medium_24_p8 84M 77.9% 80.3% backbone

Training

For training using a single node, use the following command

python -m torch.distributed.launch --nproc_per_node=[NUM_GPUS] --use_env main.py --model [MODEL_KEY] --batch-size [BATCH_SIZE] --drop-path [STOCHASTIC_DEPTH_RATIO] --output_dir [OUTPUT_PATH]

For example, the XCiT-S12/16 model can be trained using the following command

python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --model xcit_small_12_p16 --batch-size 128 --drop-path 0.05 --output_dir /experiments/xcit_small_12_p16/ --epochs [NUM_EPOCHS]

For multinode training via SLURM you can alternatively use

python run_with_submitit.py --partition [PARTITION_NAME] --nodes 2 --ngpus 8 --model xcit_small_12_p16 --batch-size 64 --drop-path 0.05 --job_dir /experiments/xcit_small_12_p16/ --epochs 400

More details for the hyper-parameters used to train the different models can be found in Table B.1 in the paper.

Evaluation

To evaluate an XCiT model using the checkpoints above or models you trained use the following command:

python main.py --eval --model  --input-size  [--full_crop] --pretrained 

By default we use the --full_crop flag which evaluates the model with a crop ratio of 1.0 instead of 0.875 following CaiT.

For example, the command to evaluate the XCiT-S12/16 using 224x224 images:

python main.py --eval --model xcit_small_12_p16 --input-size 384 --full_crop --pretrained https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p16_224.pth

Acknowledgement

This repository is built using the Timm library and the DeiT repository. The self-supervised training is based on the DINO repository.

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Contributing

We actively welcome your pull requests! Please see CONTRIBUTING.md and CODE_OF_CONDUCT.md for more info.

Citation

If you find this repository useful, please consider citing our work:

@misc{elnouby2021xcit,
      title={XCiT: Cross-Covariance Image Transformers}, 
      author={Alaaeldin El-Nouby and Hugo Touvron and Mathilde Caron and Piotr Bojanowski and Matthijs Douze and Armand Joulin and Ivan Laptev and Natalia Neverova and Gabriel Synnaeve and Jakob Verbeek and Hervé Jegou},
      year={2021},
      journal={arXiv preprint arXiv:2106.09681},
}
Owner
Facebook Research
Facebook Research
:house_with_garden: Fast & easy transfer learning for NLP. Harvesting language models for the industry. Focus on Question Answering.

(Framework for Adapting Representation Models) What is it? FARM makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built u

deepset 1.6k Dec 27, 2022
A high-level yet extensible library for fast language model tuning via automatic prompt search

ruPrompts ruPrompts is a high-level yet extensible library for fast language model tuning via automatic prompt search, featuring integration with Hugg

Sber AI 37 Dec 07, 2022
MRC approach for Aspect-based Sentiment Analysis (ABSA)

B-MRC MRC approach for Aspect-based Sentiment Analysis (ABSA) Paper: Bidirectional Machine Reading Comprehension for Aspect Sentiment Triplet Extracti

Phuc Phan 1 Apr 05, 2022
Python interface for converting Penn Treebank trees to Stanford Dependencies and Universal Depenencies

PyStanfordDependencies Python interface for converting Penn Treebank trees to Universal Dependencies and Stanford Dependencies. Example usage Start by

David McClosky 64 May 08, 2022
NeoDays-based tileset for the roguelike CDDA (Cataclysm Dark Days Ahead)

NeoDaysPlus Reduced contrast, expanded, and continuously developed version of the CDDA tileset NeoDays that's being completed with new sprites for mis

0 Nov 12, 2022
DANeS is an open-source E-newspaper dataset by collaboration between DATASET JSC (dataset.vn) and AIV Group (aivgroup.vn)

DANeS - Open-source E-newspaper dataset Source: Technology vector created by macrovector - www.freepik.com. DANeS is an open-source E-newspaper datase

DATASET .JSC 64 Aug 17, 2022
Understand Text Summarization and create your own summarizer in python

Automatic summarization is the process of shortening a text document with software, in order to create a summary with the major points of the original document. Technologies that can make a coherent

Sreekanth M 1 Oct 18, 2022
A Paper List for Speech Translation

Keyword: Speech Translation, Spoken Language Processing, Natural Language Processing

138 Dec 24, 2022
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

Grammarly 227 Jan 02, 2023
Implementation of Token Shift GPT - An autoregressive model that solely relies on shifting the sequence space for mixing

Token Shift GPT Implementation of Token Shift GPT - An autoregressive model that relies solely on shifting along the sequence dimension and feedforwar

Phil Wang 32 Oct 14, 2022
This repository will contain the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Project Page | Paper | Supplementary | Video | Slides | Blog | Talk If

1.1k Dec 27, 2022
Spooky Skelly For Python

_____ _ _____ _ _ _ | __| ___ ___ ___ | |_ _ _ | __|| |_ ___ | || | _ _ |__ || . || . || . || '

Kur0R1uka 1 Dec 23, 2021
Japanese Long-Unit-Word Tokenizer with RemBertTokenizerFast of Transformers

Japanese-LUW-Tokenizer Japanese Long-Unit-Word (国語研長単位) Tokenizer for Transformers based on 青空文庫 Basic Usage from transformers import RemBertToken

Koichi Yasuoka 3 Dec 22, 2021
Blackstone is a spaCy model and library for processing long-form, unstructured legal text

Blackstone Blackstone is a spaCy model and library for processing long-form, unstructured legal text. Blackstone is an experimental research project f

ICLR&D 579 Jan 08, 2023
Generate product descriptions, blogs, ads and more using GPT architecture with a single request to TextCortex API a.k.a Hemingwai

TextCortex - HemingwAI Generate product descriptions, blogs, ads and more using GPT architecture with a single request to TextCortex API a.k.a Hemingw

TextCortex AI 27 Nov 28, 2022
This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project

Common Voice Utils This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project. It aims t

Francis Tyers 40 Dec 20, 2022
Dual languaged (rus+eng) tool for packing and unpacking archives of Silky Engine.

SilkyArcTool English Dual languaged (rus+eng) GUI tool for packing and unpacking archives of Silky Engine. It is not the same arc as used in Ai6WIN. I

Tester 5 Sep 15, 2022
Simple, hackable offline speech to text - using the VOSK-API.

Simple, hackable offline speech to text - using the VOSK-API.

Campbell Barton 844 Jan 07, 2023
Question answering app is used to answer for a user given question from user given text.

Question answering app is used to answer for a user given question from user given text.It is created using HuggingFace's transformer pipeline and streamlit python packages.

Siva Prakash 3 Apr 05, 2022