Predict an emoji that is associated with a text

Overview

Sentiment Analysis

Sentiment analysis in computational linguistics is a general term for techniques that quantify sentiment or mood in a text. Can you tell from a text whether the writer is happy? Angry? Disappointed? Can you put their happiness on a 1-5 scale?

Robust tools for sentiment analysis are often very desirable for companies, for example. Imagine that a company has just launched a new product GizmoX. Now the management wants to know how customers feel about it. Instead of calling or writing each person who bought GizmoX, if we could just have a program go on the web and find text on message boards that discuss GizmoX and automatically rate their attitude toward their recent purchase, valuable information could be obtained, practically for free. Because sentiment analysis is used so widely for this purpose, it is sometimes called Opinion Mining.

Of course, to be really accurate at analyzing sentiment you almost have to have a human in the loop. There are many subtleties in texts that computer algorithms still have a hard time with - detecting sarcasm, for example. But, for many practical purposes you don't have to be 100% accurate in your analysis for it to be useful. A sentiment analyzer that gets it right 80% of the time can still be very valuable.

Emoji Prediction

Emoji prediction is a fun variant of sentiment analysis. When texting your friends, can you tell their emotional state? Are they happy? Could you put an appropriate smiley on each text message you receive? If so, you probably understand their sentiment.

In this project, we build what's called a classifier that learns to associate emojis with sentences. Although there are many technical details, the principle behind the classifier is very simple: we start with a large amount of sentences that contain emojis collected from Twitter messages. Then we look at features from those sentences (words, word pairs, etc.) and train our classifier to associate certain features with their (known) smileys. For example, if the classifier sees the word "happy" in many sentences that also has the smiley ๐Ÿ˜‚ , it will learn to classify such messages as ๐Ÿ˜‚ . On the other hand, the word "happy" could be preceded by "not" in which case we shouldn't rely on just single words to be associated with certain smileys. For this reason, we also look at word sequences, and in this case, would learn that "not happy" is more strongly associated with sadness, outweighing the "happy" part. The classifier learns to look at the totality of many word sequences found in a sentence and figures out what class of smiley would best characterize that sentence. Although the principle is simple, if we have millions of words of text with known smileys associated with the sentences, we can actually learn to do pretty well on this task.

If you don't want to actually re-create the classifier, you can skip ahead to the Error Analysis section where you'll see how well it does in predicting 7 different smileys after being "trained" on some text.

Technical: Quickstart

To use this project, it's required to install python3, jupyter notebook, and some python libraries.

Install

Install python3

If you don't have python3 on your computer, there are two options:

  • Download python3 from Anaconda, which includes Python, Jupyter Notebook, and the other libraries.
  • Download python3 from python.org

Install packages

All packages used for this project are written in requirements.txt. To install, you can run

$ pip3 install -r requirements.txt

Download project

To download this project repository, you can run

$ git clone https://github.com/TetsumichiUmada/text2emoji.git

Run jupyter notebook

To start jupyter notebook, you move to the directory with cd path_to/text2emoji, then run

$ jupyter notebook

See Running the Notebook for more details.

Project Details

The goal of this project is to predict an emoji that is associated with a text message. To accomplish this task, we train and test several supervised machine learning models on a data to predict a sentiment associated with a text message. Then, we represent the predicted sentiment as an emoji.

Data Sets

The data comes from the DeepEmoji/data repository. Since the file format is a pickle, we wrote a python 2 script to covert a pickle to a txt file. The data (both pickle and txt files) and scripts are stored in the text2emoji/data directory.

Among the available data on the repository, we use the PsychExp dataset for this project. In the file, there are 7840 samples, and each line contains a text message and its sentimental labels which are represented as a vector [joy, fear, anger, sadness, disgust, shame, guilt].

In the txt file, each line is formatted like below:

[ 1.  0.  0.  0.  0.  0.  0.] Passed the last exam.

Since the first position of the vector is 1, the text is labeled as an instance of joy.

For more information about the original data sets, please check DeepEmoji/data and text2emoji/data.

Preprocess and Features

How does a computer understand a text message and analyze its sentiment? A text message is a series of words. To be able to process text messages, we need to convert text into numerical features.

One of the methods to convert a text to numerical features is called an n-grams. An n-gram is a sequence of n words from a given text. A 2-gram(bigram) is a sequence of two words, for instance, "thank you" or "your project", and a 3-gram(trigram) is a three-word sequence of words like "please work on" or "turn your homework".

For this project, first, we convert all the texts into lower case. Then, we create n-grams with a range from 1 to 4 and count how many times each n-gram appears in the text.

Models and Results

Building a machine learning model involves mainly two steps. The first step is to train a model. After that, we evaluate the model on a separate data set---i.e. we don't evaluate performance on the same data we learned from. For this project, we use four classifiers and train each classier to see which one works better for this project. To train and test the performance of each model, we split the data set into a "training set" and a "test set", in the ratio of 80% and 20%. By separating the data, we can make sure that the model generalizes well and can perform well in the real world.

We evaluate the performance of each model by calculating an accuracy score. The accuracy score is simply the proportion of classifications that were done correctly and is calculated by

$$ \text{Accuracy} = \frac{\text{number of correct classifications}}{\text{total number of classifications made}} $$

For this project, we tested following classifiers. Their accuracy scores are summarized in the table below.

Classifier Training Accuracy Test Accuracy
SVC 0.1458890 0.1410428
LinearSVC 0.9988302 0.5768717
RandomForestClassifier 0.9911430 0.4304813
DecisionTreeClassifier 0.9988302 0.4585561

Based on the accuracy scores, it seems like SVC works, but gives poor results. The LinearSVC classifier works quite well although we see some overfitting (meaning that the training accuracy is high and test accuracy is significantly lower). This means the model has difficulty generalizing to examples it hasn't seen.

We can observe the same phenomenon for the other classifiers. In the error analysis, we therefore focus on the LinearSVC classifier that performs the best.

Error Analysis

We analyze the classification results from the best performing (LinearSVC) model, using a confusion matrix. A confusion matrix is a table which summarizes the performance of a classification algorithm and reveals the type of misclassifications that occur. In other words, it shows the classifier's confusion between classes. The rows in the matrix represent the true labels and the columns are predicted labels. A perfect classifier would have big numbers on the main diagonal and zeroes everywhere else.

It is obvious that the classifier has learned many significant patterns: the numbers along the diagonal are much higher than off the diagonal. That means true anger most often gets classified as anger, and so on.

On the other hand, the classifier tends to often misclassify text messages associated with guilt, shame, and anger. This is perhaps because it's hard to pinpoint specific words or sequences of words that characterize these sentiments. On the other hand, messages involving joy are more likely to have words such as "good", "like", and "happy", and the classifier is able to handle such sentiments much better.

Future Work

To improve on the current results, we probably, first and foremost, need access to more data for training. At the same time, adding more specific features to extract from the text may also help. For example, paying attention to usage of all caps, punctuation patterns, and similar things would probably improve the classifier.

A statistical analysis of useful features through a Chi-squared test to find out more informative tokens could also provide insight. As in many other tasks, moving from a linear classifier to a deep learning (neural network) model would probably also boost the performance.

Example/Demo

Here are four example sentences and the emojis the classifier associates them with:

๐Ÿ˜‚ Thank you for dinner!
๐Ÿ˜ข I don't like it
๐Ÿ˜ฑ My car skidded on the wet street
๐Ÿ˜ข My cat died

References

Owner
Tetsumichi(Telly) Umada
Master student @ Univ. of Colorado, Boulder
Tetsumichi(Telly) Umada
FB ID CLONER WUTHOT CHECKPOINT, FACEBOOK ID CLONE FROM FILE

* MY SOCIAL MEDIA : Programming And Memes Want to contact Mr. Error ? CONTACT : [ema

Mr. Error 9 Jun 17, 2021
State of the art faster Natural Language Processing in Tensorflow 2.0 .

tf-transformers: faster and easier state-of-the-art NLP in TensorFlow 2.0 ****************************************************************************

74 Dec 05, 2022
๐Ÿ๐Ÿ’ฏpySBD (Python Sentence Boundary Disambiguation) is a rule-based sentence boundary detection that works out-of-the-box.

pySBD: Python Sentence Boundary Disambiguation (SBD) pySBD - python Sentence Boundary Disambiguation (SBD) - is a rule-based sentence boundary detecti

Nipun Sadvilkar 549 Jan 06, 2023
PUA Programming Language written in Python.

pua-lang PUA Programming Language written in Python. Installation git clone https://github.com/zhaoyang97/pua-lang.git cd pua-lang pip install . Try

zy 4 Feb 19, 2022
Source code of the "Graph-Bert: Only Attention is Needed for Learning Graph Representations" paper

Graph-Bert Source code of "Graph-Bert: Only Attention is Needed for Learning Graph Representations". Please check the script.py as the entry point. We

14 Mar 25, 2022
CVSS: A Massively Multilingual Speech-to-Speech Translation Corpus

CVSS: A Massively Multilingual Speech-to-Speech Translation Corpus CVSS is a massively multilingual-to-English speech-to-speech translation corpus, co

Google Research Datasets 118 Jan 06, 2023
A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework.

Unpacker Karton Service A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework. This project is

c3rb3ru5 45 Jan 05, 2023
โ›ต๏ธThe official PyTorch implementation for "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing" (EMNLP 2020).

BERT-of-Theseus Code for paper "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing". BERT-of-Theseus is a new compressed BERT by progre

Kevin Canwen Xu 284 Nov 25, 2022
The code from the whylogs workshop in DataTalks.Club on 29 March 2022

whylogs Workshop The code from the whylogs workshop in DataTalks.Club on 29 March 2022 whylogs - The open source standard for data logging (Don't forg

DataTalksClub 12 Sep 05, 2022
Source code and dataset for ACL 2019 paper "ERNIE: Enhanced Language Representation with Informative Entities"

ERNIE Source code and dataset for "ERNIE: Enhanced Language Representation with Informative Entities" Reqirements: Pytorch=0.4.1 Python3 tqdm boto3 r

THUNLP 1.3k Dec 30, 2022
TFIDF-based QA system for AIO2 competition

AIO2 TF-IDF Baseline This is a very simple question answering system, which is developed as a lightweight baseline for AIO2 competition. In the traini

Masatoshi Suzuki 4 Feb 19, 2022
SciBERT is a BERT model trained on scientific text.

SciBERT is a BERT model trained on scientific text.

AI2 1.2k Dec 24, 2022
IMDB film review sentiment classification based on BERT's supervised learning model.

IMDB film review sentiment classification based on BERT's supervised learning model. On the other hand, the model can be extended to other natural language multi-classification tasks.

Paris 1 Apr 17, 2022
History Aware Multimodal Transformer for Vision-and-Language Navigation

History Aware Multimodal Transformer for Vision-and-Language Navigation This repository is the official implementation of History Aware Multimodal Tra

Shizhe Chen 46 Nov 23, 2022
๐Ÿ’› Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 50 Dec 21, 2022
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

Facebook Research 2.7k Dec 27, 2022
Training code for Korean multi-class sentiment analysis

KoSentimentAnalysis Bert implementation for the Korean multi-class sentiment analysis ์™œ ํ•œ๊ตญ์–ด ๊ฐ์ • ๋‹ค์ค‘๋ถ„๋ฅ˜ ๋ชจ๋ธ์€ ๊ฑฐ์˜ ์—†๋Š” ๊ฒƒ์ผ๊นŒ?์—์„œ ์‹œ์ž‘๋œ ํ”„๋กœ์ ํŠธ Environment: Pytorch, Da

Donghoon Shin 3 Dec 02, 2022
Voilร  turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction Voilร  turns Jupyter notebooks into standalone web applications. Unlike the

Voilร  Dashboards 4.5k Jan 03, 2023
Nateve compiler developed with python.

Adam Adam is a Nateve Programming Language compiler developed using Python. Nateve Nateve is a new general domain programming language open source ins

Nateve 7 Jan 15, 2022
MHtyper is an end-to-end pipeline for recognized the Forensic microhaplotypes in Nanopore sequencing data.

MHtyper is an end-to-end pipeline for recognized the Forensic microhaplotypes in Nanopore sequencing data. It is implemented using Python.

willow 6 Jun 27, 2022