A collection of GNN-based fake news detection models.

Overview

GNN-based Fake News Detection

Open in Code Ocean PWC PWC

Installation | Datasets | User Guide | Benchmark | How to Contribute

This repo includes the Pytorch-Geometric implementation of a series of Graph Neural Network (GNN) based fake news detection models. All GNN models are implemented and evaluated under the User Preference-aware Fake News Detection (UPFD) framework. The fake news detection problem is instantiated as a graph classification task under the UPFD framework.

You can make reproducible run on CodeOcean without manual configuration.

We welcome contributions of results of existing models and the SOTA results of new models based on our dataset. You can check the benchmark hosted by PaperWithCode for SOTA models and their performances.

If you use the code in your project, please cite the following paper:

SIGIR'21 (PDF)

@inproceedings{dou2021user,
  title={User Preference-aware Fake News Detection},
  author={Dou, Yingtong and Shu, Kai and Xia, Congying and Yu, Philip S. and Sun, Lichao},
  booktitle={Proceedings of the 44nd International ACM SIGIR Conference on Research and Development in Information Retrieval},
  year={2021}
}

Installation

To run the code in this repo, you need to have Python>=3.6, PyTorch>=1.6, and PyTorch-Geometric>=1.6.1. Please follow the installation instructions of PyTorch-Geometric to install PyG.

Other dependencies can be installed using the following commands:

git clone https://github.com/safe-graph/GNN-FakeNews.git
cd GNN-FakeNews
pip install -r requirements.txt

Datasets

The dataset can be loaded using the PyG API. You can download the dataset (2.66GB) via the link below and unzip the data under the \data directory.

https://mega.nz/file/j5ZFEK7Z#KDnX2sjg65cqXsIRi0cVh6cvp7CDJZh1Zlm9-Xt28d4

The dataset includes fake&real news propagation networks on Twitter built according to fact-check information from Politifact and Gossipcop. The news retweet graphs were originally extracted by FakeNewsNet. We crawled near 20 million historical tweets from users who participated in fake news propagation in FakeNewsNet to generate node features in the dataset.

The statistics of the dataset is shown below:

Data #Graphs #Fake News #Total Nodes #Total Edges #Avg. Nodes per Graph
Politifact 314 157 41,054 40,740 131
Gossipcop 5464 2732 314,262 308,798 58

Due to the Twitter policy, we could not release the crawled user historical tweets publicly. To get the corresponding Twitter user information, you can refer to news lists under \data and map the news id to FakeNewsNet. Then, you can crawl the user information by following the instruction on FakeNewsNet. In the UPFD project, we use Tweepy and Twitter Developer API to get the user information.

We incorporate four node feature types in the dataset, the 768-dimensional bert and 300-dimensional spacy features are encoded using pretrained BERT and spaCy word2vec, respectively. The 10-dimensional profile feature is obtained from a Twitter account's profile. You can refer to profile_feature.py for profile feature extraction. The 310-dimensional content feature is composed of a 300-dimensional user comment word2vec (spaCy) embedding plus a 10-dimensional profile feature.

Each graph is a hierarchical tree-structured graph where the root node represents the news, the leaf nodes are Twitter users who retweeted the root news. A user node has an edge to the news node if he/she retweeted the news tweet. Two user nodes have an edge if one user retweeted the news tweet from the other user. The following figure shows the UPFD framework including the dataset construction details You can refer to the paper for more details about the dataset.



User Guide

All GNN-based fake news detection models are under the \gnn_model directory. You can fine-tune each model according to arguments specified in the argparser of each model. The implemented models are as follows:

  • GNN-CL: Han, Yi, Shanika Karunasekera, and Christopher Leckie. "Graph neural networks with continual learning for fake news detection from social media." arXiv preprint arXiv:2007.03316 (2020).
  • GCNFN: Monti, Federico, Fabrizio Frasca, Davide Eynard, Damon Mannion, and Michael M. Bronstein. "Fake news detection on social media using geometric deep learning." arXiv preprint arXiv:1902.06673 (2019).
  • BiGCN: Bian, Tian, Xi Xiao, Tingyang Xu, Peilin Zhao, Wenbing Huang, Yu Rong, and Junzhou Huang. "Rumor detection on social media with bi-directional graph convolutional networks." In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 01, pp. 549-556. 2020.
  • UPFD-GCN: Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." arXiv preprint arXiv:1609.02907 (2016).
  • UPFD-GAT: Veličković, Petar, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. "Graph attention networks." arXiv preprint arXiv:1710.10903 (2017).
  • UPFD-SAGE: Hamilton, William L., Rex Ying, and Jure Leskovec. "Inductive representation learning on large graphs." arXiv preprint arXiv:1706.02216 (2017).

Since the UPFD framework is built upon the PyG, you can easily try other graph classification models like GIN and HGP-SL under our dataset.

How to Contribute

You are welcomed to submit your model code, hyper-parameters, and results to this repo via create a pull request. After verifying the results, your model will be added to the repo and the result will be updated to the benchmark. Please email to [email protected] for other inquiries.

Owner
SafeGraph
Towards Secure Machine Learning on Graph Data
SafeGraph
Words-per-minute - A terminal app written in python utilizing the curses module that tests the user's ability to type

words-per-minute A terminal app written in python utilizing the curses module th

Tanim Islam 1 Jan 14, 2022
Blackstone is a spaCy model and library for processing long-form, unstructured legal text

Blackstone Blackstone is a spaCy model and library for processing long-form, unstructured legal text. Blackstone is an experimental research project f

ICLR&D 579 Jan 08, 2023
SimBERT升级版(SimBERTv2)!

RoFormer-Sim RoFormer-Sim,又称SimBERTv2,是我们之前发布的SimBERT模型的升级版。 介绍 https://kexue.fm/archives/8454 训练 tensorflow 1.14 + keras 2.3.1 + bert4keras 0.10.6 下载

317 Dec 23, 2022
Dust model dichotomous performance analysis

Dust-model-dichotomous-performance-analysis Using a collated dataset of 90,000 dust point source observations from 9 drylands studies from around the

1 Dec 17, 2021
lightweight, fast and robust columnar dataframe for data analytics with online update

streamdf Streamdf is a lightweight data frame library built on top of the dictionary of numpy array, developed for Kaggle's time-series code competiti

23 May 19, 2022
Google and Stanford University released a new pre-trained model called ELECTRA

Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For furth

Yiming Cui 1.2k Dec 30, 2022
💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants

Rasa Open Source Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual

Rasa 15.3k Dec 30, 2022
Tensorflow implementation of paper: Learning to Diagnose with LSTM Recurrent Neural Networks.

Multilabel time series classification with LSTM Tensorflow implementation of model discussed in the following paper: Learning to Diagnose with LSTM Re

Aaqib 552 Nov 28, 2022
TFIDF-based QA system for AIO2 competition

AIO2 TF-IDF Baseline This is a very simple question answering system, which is developed as a lightweight baseline for AIO2 competition. In the traini

Masatoshi Suzuki 4 Feb 19, 2022
The source code of "Language Models are Few-shot Multilingual Learners" (MRL @ EMNLP 2021)

Language Models are Few-shot Multilingual Learners Paper This is the source code of the paper [Arxiv] [ACL Anthology]: This code has been written usin

Genta Indra Winata 45 Nov 21, 2022
Chinese segmentation library

What is loso? loso is a Chinese segmentation system written in Python. It was developed by Victor Lin ( Fang-Pen Lin 82 Jun 28, 2022

Fine-tune GPT-3 with a Google Chat conversation history

Google Chat GPT-3 This repo will help you fine-tune GPT-3 with a Google Chat conversation history. The trained model will be able to converse as one o

Nate Baer 7 Dec 10, 2022
🧪 Cutting-edge experimental spaCy components and features

spacy-experimental: Cutting-edge experimental spaCy components and features This package includes experimental components and features for spaCy v3.x,

Explosion 65 Dec 30, 2022
Language-Agnostic SEntence Representations

LASER Language-Agnostic SEntence Representations LASER is a library to calculate and use multilingual sentence embeddings. NEWS 2019/11/08 CCMatrix is

Facebook Research 3.2k Jan 04, 2023
DaCy: The State of the Art Danish NLP pipeline using SpaCy

DaCy: A SpaCy NLP Pipeline for Danish DaCy is a Danish preprocessing pipeline trained in SpaCy. At the time of writing it has achieved State-of-the-Ar

Kenneth Enevoldsen 71 Jan 06, 2023
jiant is an NLP toolkit

jiant is an NLP toolkit The multitask and transfer learning toolkit for natural language processing research Why should I use jiant? jiant supports mu

ML² AT CILVR 1.5k Jan 04, 2023
Example code for "Real-World Natural Language Processing"

Real-World Natural Language Processing This repository contains example code for the book "Real-World Natural Language Processing." AllenNLP (2.5.0 or

Masato Hagiwara 303 Dec 17, 2022
Contains the code and data for our #ICSE2022 paper titled as "CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Naming Sequences"

CodeFill This repository contains the code for our paper titled as "CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Namin

Software Analytics Lab 11 Oct 31, 2022
Beyond Accuracy: Behavioral Testing of NLP models with CheckList

CheckList This repository contains code for testing NLP Models as described in the following paper: Beyond Accuracy: Behavioral Testing of NLP models

Marco Tulio Correia Ribeiro 1.8k Dec 28, 2022
Binaural Speech Synthesis

Binaural Speech Synthesis This repository contains code to train a mono-to-binaural neural sound renderer. If you use this code or the provided datase

Facebook Research 135 Dec 18, 2022