A collection of GNN-based fake news detection models.

Overview

GNN-based Fake News Detection

Open in Code Ocean PWC PWC

Installation | Datasets | User Guide | Benchmark | How to Contribute

This repo includes the Pytorch-Geometric implementation of a series of Graph Neural Network (GNN) based fake news detection models. All GNN models are implemented and evaluated under the User Preference-aware Fake News Detection (UPFD) framework. The fake news detection problem is instantiated as a graph classification task under the UPFD framework.

You can make reproducible run on CodeOcean without manual configuration.

We welcome contributions of results of existing models and the SOTA results of new models based on our dataset. You can check the benchmark hosted by PaperWithCode for SOTA models and their performances.

If you use the code in your project, please cite the following paper:

SIGIR'21 (PDF)

@inproceedings{dou2021user,
  title={User Preference-aware Fake News Detection},
  author={Dou, Yingtong and Shu, Kai and Xia, Congying and Yu, Philip S. and Sun, Lichao},
  booktitle={Proceedings of the 44nd International ACM SIGIR Conference on Research and Development in Information Retrieval},
  year={2021}
}

Installation

To run the code in this repo, you need to have Python>=3.6, PyTorch>=1.6, and PyTorch-Geometric>=1.6.1. Please follow the installation instructions of PyTorch-Geometric to install PyG.

Other dependencies can be installed using the following commands:

git clone https://github.com/safe-graph/GNN-FakeNews.git
cd GNN-FakeNews
pip install -r requirements.txt

Datasets

The dataset can be loaded using the PyG API. You can download the dataset (2.66GB) via the link below and unzip the data under the \data directory.

https://mega.nz/file/j5ZFEK7Z#KDnX2sjg65cqXsIRi0cVh6cvp7CDJZh1Zlm9-Xt28d4

The dataset includes fake&real news propagation networks on Twitter built according to fact-check information from Politifact and Gossipcop. The news retweet graphs were originally extracted by FakeNewsNet. We crawled near 20 million historical tweets from users who participated in fake news propagation in FakeNewsNet to generate node features in the dataset.

The statistics of the dataset is shown below:

Data #Graphs #Fake News #Total Nodes #Total Edges #Avg. Nodes per Graph
Politifact 314 157 41,054 40,740 131
Gossipcop 5464 2732 314,262 308,798 58

Due to the Twitter policy, we could not release the crawled user historical tweets publicly. To get the corresponding Twitter user information, you can refer to news lists under \data and map the news id to FakeNewsNet. Then, you can crawl the user information by following the instruction on FakeNewsNet. In the UPFD project, we use Tweepy and Twitter Developer API to get the user information.

We incorporate four node feature types in the dataset, the 768-dimensional bert and 300-dimensional spacy features are encoded using pretrained BERT and spaCy word2vec, respectively. The 10-dimensional profile feature is obtained from a Twitter account's profile. You can refer to profile_feature.py for profile feature extraction. The 310-dimensional content feature is composed of a 300-dimensional user comment word2vec (spaCy) embedding plus a 10-dimensional profile feature.

Each graph is a hierarchical tree-structured graph where the root node represents the news, the leaf nodes are Twitter users who retweeted the root news. A user node has an edge to the news node if he/she retweeted the news tweet. Two user nodes have an edge if one user retweeted the news tweet from the other user. The following figure shows the UPFD framework including the dataset construction details You can refer to the paper for more details about the dataset.



User Guide

All GNN-based fake news detection models are under the \gnn_model directory. You can fine-tune each model according to arguments specified in the argparser of each model. The implemented models are as follows:

  • GNN-CL: Han, Yi, Shanika Karunasekera, and Christopher Leckie. "Graph neural networks with continual learning for fake news detection from social media." arXiv preprint arXiv:2007.03316 (2020).
  • GCNFN: Monti, Federico, Fabrizio Frasca, Davide Eynard, Damon Mannion, and Michael M. Bronstein. "Fake news detection on social media using geometric deep learning." arXiv preprint arXiv:1902.06673 (2019).
  • BiGCN: Bian, Tian, Xi Xiao, Tingyang Xu, Peilin Zhao, Wenbing Huang, Yu Rong, and Junzhou Huang. "Rumor detection on social media with bi-directional graph convolutional networks." In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 01, pp. 549-556. 2020.
  • UPFD-GCN: Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." arXiv preprint arXiv:1609.02907 (2016).
  • UPFD-GAT: Veličković, Petar, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. "Graph attention networks." arXiv preprint arXiv:1710.10903 (2017).
  • UPFD-SAGE: Hamilton, William L., Rex Ying, and Jure Leskovec. "Inductive representation learning on large graphs." arXiv preprint arXiv:1706.02216 (2017).

Since the UPFD framework is built upon the PyG, you can easily try other graph classification models like GIN and HGP-SL under our dataset.

How to Contribute

You are welcomed to submit your model code, hyper-parameters, and results to this repo via create a pull request. After verifying the results, your model will be added to the repo and the result will be updated to the benchmark. Please email to [email protected] for other inquiries.

Owner
SafeGraph
Towards Secure Machine Learning on Graph Data
SafeGraph
無料で使える中品質なテキスト読み上げソフトウェア、VOICEVOXの音声合成エンジン

VOICEVOX ENGINE VOICEVOXの音声合成エンジン。 実態は HTTP サーバーなので、リクエストを送信すればテキスト音声合成できます。 API ドキュメント VOICEVOX ソフトウェアを起動した状態で、ブラウザから

Hiroshiba 3 Jul 05, 2022
👑 spaCy building blocks and visualizers for Streamlit apps

spacy-streamlit: spaCy building blocks for Streamlit apps This package contains utilities for visualizing spaCy models and building interactive spaCy-

Explosion 620 Dec 29, 2022
This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers.

private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why

Xuechen Li 73 Dec 28, 2022
Ceaser-Cipher - The Caesar Cipher technique is one of the earliest and simplest method of encryption technique

Ceaser-Cipher The Caesar Cipher technique is one of the earliest and simplest me

Lateefah Ajadi 2 May 12, 2022
auto_code_complete is a auto word-completetion program which allows you to customize it on your need

auto_code_complete v1.3 purpose and usage auto_code_complete is a auto word-completetion program which allows you to customize it on your needs. the m

RUO 2 Feb 22, 2022
A collection of models for image - text generation in ACM MM 2021.

Bi-directional Image and Text Generation UMT-BITG (image & text generator) Unifying Multimodal Transformer for Bi-directional Image and Text Generatio

Multimedia Research 63 Oct 30, 2022
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022
मराठी भाषा वाचविण्याचा एक प्रयास. इंग्रजी ते मराठीचा शब्दकोश. An attempt to preserve the Marathi language. A lightweight and ad free English to Marathi thesaurus.

For English, scroll down मराठी शब्द मराठी भाषा वाचवण्यासाठी मी हा ओपन सोर्स प्रोजेक्ट सुरू केला आहे. माझ्या मते, आपली भाषा हळूहळू आणि कोणाचाही लक्षात

मुक्त स्त्रोत 20 Oct 11, 2022
Simple Annotated implementation of GPT-NeoX in PyTorch

Simple Annotated implementation of GPT-NeoX in PyTorch This is a simpler implementation of GPT-NeoX in PyTorch. We have taken out several optimization

labml.ai 101 Dec 03, 2022
The ibet-Prime security token management system for ibet network.

ibet-Prime The ibet-Prime security token management system for ibet network. Features ibet-Prime is an API service that enables the issuance and manag

BOOSTRY 8 Dec 22, 2022
CMeEE 数据集医学实体抽取

医学实体抽取_GlobalPointer_torch 介绍 思想来自于苏神 GlobalPointer,原始版本是基于keras实现的,模型结构实现参考现有 pytorch 复现代码【感谢!】,基于torch百分百复现苏神原始效果。 数据集 中文医学命名实体数据集 点这里申请,很简单,共包含九类医学

85 Dec 28, 2022
NLPShala , the best IDE for all Natural language processing tasks.

The revolutionary IDE for all NLP (Natural language processing) stuffs on the internet.

Abhi 3 Aug 08, 2021
iSTFTNet : Fast and Lightweight Mel-spectrogram Vocoder Incorporating Inverse Short-time Fourier Transform

iSTFTNet : Fast and Lightweight Mel-spectrogram Vocoder Incorporating Inverse Short-time Fourier Transform This repo try to implement iSTFTNet : Fast

Rishikesh (ऋषिकेश) 126 Jan 02, 2023
Gathers machine learning and Tensorflow deep learning models for NLP problems, 1.13 < Tensorflow < 2.0

NLP-Models-Tensorflow, Gathers machine learning and tensorflow deep learning models for NLP problems, code simplify inside Jupyter Notebooks 100%. Tab

HUSEIN ZOLKEPLI 1.7k Dec 30, 2022
LightSpeech: Lightweight and Fast Text to Speech with Neural Architecture Search

LightSpeech UnOfficial PyTorch implementation of LightSpeech: Lightweight and Fast Text to Speech with Neural Architecture Search.

Rishikesh (ऋषिकेश) 54 Dec 03, 2022
PyKaldi is a Python scripting layer for the Kaldi speech recognition toolkit.

PyKaldi is a Python scripting layer for the Kaldi speech recognition toolkit. It provides easy-to-use, low-overhead, first-class Python wrappers for t

922 Dec 31, 2022
A 10000+ hours dataset for Chinese speech recognition

A 10000+ hours dataset for Chinese speech recognition

309 Dec 16, 2022
Visual Automata is a Python 3 library built as a wrapper for Caleb Evans' Automata library to add more visualization features.

Visual Automata Copyright 2021 Lewi Lie Uberg Released under the MIT license Visual Automata is a Python 3 library built as a wrapper for Caleb Evans'

Lewi Uberg 55 Nov 17, 2022
Collection of useful (to me) python scripts for interacting with napari

Napari scripts A collection of napari related tools in various state of disrepair/functionality. Browse_LIF_widget.py This module can be imported, for

5 Aug 15, 2022
An ActivityWatch watcher to pose questions to the user and record her answers.

aw-watcher-ask An ActivityWatch watcher to pose questions to the user and record her answers. This watcher uses Zenity to present dialog boxes to the

Bernardo Chrispim Baron 33 Dec 03, 2022