NAACL 2022: MCSE: Multimodal Contrastive Learning of Sentence Embeddings

Related tags

Text Data & NLPMCSE
Overview

MCSE: Multimodal Contrastive Learning of Sentence Embeddings

This repository contains code and pre-trained models for our NAACL-2022 paper MCSE: Multimodal Contrastive Learning of Sentence Embeddings. If you find this reposity useful, please consider citing our paper.

Contact: Miaoran Zhang ([email protected])

Pre-trained Models & Results

Model Avg. STS
flickr-mcse-bert-base-uncased [Google Drive] 77.70
flickr-mcse-roberta-base [Google Drive] 78.44
coco-mcse-bert-base-uncased [Google Drive] 77.08
coco-mcse-roberta-base [Google Drive] 78.17

Note: flickr indicates that models are trained on wiki+flickr, and coco indicates that models are trained on wiki+coco.

Quickstart

Setup

  • Python 3.9.5
  • Pytorch 1.7.1
  • Install other packages:
pip install -r requirements.txt

Data Preparation

Please organize the data directory as following:

REPO ROOT
|
|--data    
|  |--wiki1m_for_simcse.txt  
|  |--flickr_random_captions.txt    
|  |--flickr_resnet.hdf5    
|  |--coco_random_captions.txt    
|  |--coco_resnet.hdf5  

Wiki1M

wget https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/wiki1m_for_simcse.txt

Flickr30k & MS-COCO
You can either download the preprocessed data we used:
(annotation sources: flickr30k-entities and coco).

Or preprocess the data by yourself (take Flickr30k as an example):

  1. Download the flickr30k-entities.
  2. Request access to the flickr-images from here. Note that the use of the images much abide by the Flickr Terms of Use.
  3. Run script:
    unzip ${path_to_flickr-entities}/annotations.zip
    
    python preprocess/prepare_flickr.py \
        --flickr_entities_dir ${path_to_flickr-entities}  \  
        --flickr_images_dir ${path_to_flickr-images} \
        --output_dir data/
        --batch_size 32
    

Train & Evaluation

  1. Prepare the senteval datasets for evaluation:

    cd SentEval/data/downstream/
    bash download_dataset.sh
    
  2. Run scripts:

    # For example:  (more examples are given in scripts/.)
    sh scripts/run_wiki_flickr.sh

    Note: In the paper we run experiments with 5 seeds (0,1,2,3,4). You can find the detailed parameter settings in Appendix.

Acknowledgements

  • The extremely clear and well organized codebase: SimCSE
  • SentEval toolkit
Owner
Saarland University Spoken Language Systems Group
Saarland University Spoken Language Systems Group
GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training

GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training Code and model from our AAAI 2021 paper

Amazon Web Services - Labs 83 Jan 09, 2023
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
Transformers Wav2Vec2 + Parlance's CTCDecodeTransformers Wav2Vec2 + Parlance's CTCDecode

🤗 Transformers Wav2Vec2 + Parlance's CTCDecode Introduction This repo shows how 🤗 Transformers can be used in combination with Parlance's ctcdecode

Patrick von Platen 9 Jul 21, 2022
TLA - Twitter Linguistic Analysis

TLA - Twitter Linguistic Analysis Tool for linguistic analysis of communities TLA is built using PyTorch, Transformers and several other State-of-the-

Tushar Sarkar 47 Aug 14, 2022
Simple NLP based project without any use of AI

Simple NLP based project without any use of AI

Shripad Rao 1 Apr 26, 2022
Use the state-of-the-art m2m100 to translate large data on CPU/GPU/TPU. Super Easy!

Easy-Translate is a script for translating large text files in your machine using the M2M100 models from Facebook/Meta AI. We also privide a script fo

Iker García-Ferrero 41 Dec 15, 2022
Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks

Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks. It takes raw videos/images + text as inputs, and outputs task predictions. ClipB

Jie Lei 雷杰 612 Jan 04, 2023
A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation This is a Pytorch implementation for the "Chimera" paper Learning Shared Semant

Chi Han 43 Dec 28, 2022
Chinese Grammatical Error Diagnosis

nlp-CGED Chinese Grammatical Error Diagnosis 中文语法纠错研究 基于序列标注的方法 所需环境 Python==3.6 tensorflow==1.14.0 keras==2.3.1 bert4keras==0.10.6 笔者使用了开源的bert4keras

12 Nov 25, 2022
Flaxformer: transformer architectures in JAX/Flax

Flaxformer: transformer architectures in JAX/Flax Flaxformer is a transformer library for primarily NLP and multimodal research at Google. It is used

Google 114 Dec 29, 2022
ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset.

ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset. Through its Python API, the pretrained model can be fine-tuned on any protein-related task in

241 Jan 04, 2023
JaQuAD: Japanese Question Answering Dataset

JaQuAD: Japanese Question Answering Dataset for Machine Reading Comprehension (2022, Skelter Labs)

SkelterLabs 84 Dec 27, 2022
PyTorch implementation of the paper: Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding

Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding This repository contains the official PyTorch implementation of th

Xiao Xu 26 Dec 14, 2022
aMLP Transformer Model for Japanese

aMLP-japanese Japanese aMLP Pretrained Model aMLPとは、Liu, Daiらが提案する、Transformerモデルです。 ざっくりというと、BERTの代わりに使えて、より性能の良いモデルです。 詳しい解説は、こちらの記事などを参考にしてください。 この

tanreinama 13 Aug 11, 2022
Pytorch implementation of Tacotron

Tacotron-pytorch A pytorch implementation of Tacotron: A Fully End-to-End Text-To-Speech Synthesis Model. Requirements Install python 3 Install pytorc

soobin seo 203 Dec 02, 2022
Source code for the paper "TearingNet: Point Cloud Autoencoder to Learn Topology-Friendly Representations"

TearingNet: Point Cloud Autoencoder to Learn Topology-Friendly Representations Created by Jiahao Pang, Duanshun Li, and Dong Tian from InterDigital In

InterDigital 21 Dec 29, 2022
Simple GUI where you can enter an article and get a crisp summarized version.

Text-Summarization-using-TextRank-BART Simple GUI where you can enter an article and get a crisp summarized version. How to run: Clone the repo Instal

Rohit P 4 Sep 28, 2022
Chinese Pre-Trained Language Models (CPM-LM) Version-I

CPM-Generate 为了促进中文自然语言处理研究的发展,本项目提供了 CPM-LM (2.6B) 模型的文本生成代码,可用于文本生成的本地测试,并以此为基础进一步研究零次学习/少次学习等场景。[项目首页] [模型下载] [技术报告] 若您想使用CPM-1进行推理,我们建议使用高效推理工具BMI

Tsinghua AI 1.4k Jan 03, 2023
CVSS: A Massively Multilingual Speech-to-Speech Translation Corpus

CVSS: A Massively Multilingual Speech-to-Speech Translation Corpus CVSS is a massively multilingual-to-English speech-to-speech translation corpus, co

Google Research Datasets 118 Jan 06, 2023
Natural Language Processing Specialization

Natural Language Processing Specialization In this folder, Natural Language Processing Specialization projects and notes can be found. WHAT I LEARNED

Kaan BOKE 3 Oct 06, 2022