Bu repo SAHI uygulamasını mantığını öğreniyoruz.

Overview

SAHI-Learn: SAHI'den Beraber Kodlamak İster Misiniz

teaser

Herkese merhabalar ben Kadir Nar. SAHI kütüphanesine gönüllü geliştiriciyim. Bu repo SAHI kütüphanesine yeni bir model nasıl ekleneceğini anlattım.

Geliştiriciler için SAHI Yol Haritası

1. DetectionModel(Detection)

Class ismini oluştururkan model isminin yanına DetectionModel(Detection) yazıyoruz.

Örnekler:

1.1 Mmdet:

class MmdetDetectionModel(DetectionModel)

1.2 Yolov5:

class Yolov5DetectionModel(DetectionModel):

1.3 Detectron2:

class Detectron2DetectionModel(DetectionModel)

1.4 TorchVision:

class TorchVisionDetectionModel(DetectionModel)

2.load_model():

Bu fonksiyon 3 aşamadan oluşmaktadır.

a. Kütüphaneyi import ediyoruz. PYPI desteği olmayan kütüphanelerin kurulumunu desteklenmiyor.

b. Modele girecek resimlerin image_size değerlerini güncellemeniz gerekiyor.

c. category_mapping değişkenini {"1": "pedestrian"} bu formatta olması gerekiyor.

Örnekler:

2.1 Mmdet:

def load_model(self):
    """
    Detection model is initialized and set to self.model.
    """
    try:
        import mmdet
    except ImportError:
        raise ImportError(
            'Please run "pip install -U mmcv mmdet" ' "to install MMDetection first for MMDetection inference."
        )

    from mmdet.apis import init_detector

    # create model
    model = init_detector(
        config=self.config_path,
        checkpoint=self.model_path,
        device=self.device,
    )

    # update model image size
    if self.image_size is not None:
        model.cfg.data.test.pipeline[1]["img_scale"] = (self.image_size, self.image_size)

    # set self.model
    self.model = model

    # set category_mapping
    if not self.category_mapping:
        category_mapping = {str(ind): category_name for ind, category_name in enumerate(self.category_names)}
        self.category_mapping = category_mapping

2.2 Yolov5:

    def load_model(self):
        """
        Detection model is initialized and set to self.model.
        """
        try:
            import yolov5
        except ImportError:
            raise ImportError('Please run "pip install -U yolov5" ' "to install YOLOv5 first for YOLOv5 inference.")

        # set model
        try:
            model = yolov5.load(self.model_path, device=self.device)
            model.conf = self.confidence_threshold
            self.model = model
        except Exception as e:
            TypeError("model_path is not a valid yolov5 model path: ", e)

        # set category_mapping
        if not self.category_mapping:
            category_mapping = {str(ind): category_name for ind, category_name in enumerate(self.category_names)}
            self.category_mapping = category_mapping

2.3 Detectron2:

def load_model(self):
    try:
        import detectron2
    except ImportError:
        raise ImportError(
            "Please install detectron2. Check "
            "`https://detectron2.readthedocs.io/en/latest/tutorials/install.html` "
            "for instalattion details."
        )

    from detectron2.config import get_cfg
    from detectron2.data import MetadataCatalog
    from detectron2.engine import DefaultPredictor
    from detectron2.model_zoo import model_zoo

    cfg = get_cfg()
    cfg.MODEL.DEVICE = self.device

    try:  # try to load from model zoo
        config_file = model_zoo.get_config_file(self.config_path)
        cfg.merge_from_file(config_file)
        cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url(self.config_path)
    except Exception as e:  # try to load from local
        print(e)
        if self.config_path is not None:
            cfg.merge_from_file(self.config_path)
        cfg.MODEL.WEIGHTS = self.model_path
    # set input image size
    if self.image_size is not None:
        cfg.INPUT.MIN_SIZE_TEST = self.image_size
        cfg.INPUT.MAX_SIZE_TEST = self.image_size
    # init predictor
    model = DefaultPredictor(cfg)

    self.model = model

    # detectron2 category mapping
    if self.category_mapping is None:
        try:  # try to parse category names from metadata
            metadata = MetadataCatalog.get(cfg.DATASETS.TRAIN[0])
            category_names = metadata.thing_classes
            self.category_names = category_names
            self.category_mapping = {
                str(ind): category_name for ind, category_name in enumerate(self.category_names)
            }
        except Exception as e:
            logger.warning(e)
            # https://detectron2.readthedocs.io/en/latest/tutorials/datasets.html#update-the-config-for-new-datasets
            if cfg.MODEL.META_ARCHITECTURE == "RetinaNet":
                num_categories = cfg.MODEL.RETINANET.NUM_CLASSES
            else:  # fasterrcnn/maskrcnn etc
                num_categories = cfg.MODEL.ROI_HEADS.NUM_CLASSES
            self.category_names = [str(category_id) for category_id in range(num_categories)]
            self.category_mapping = {
                str(ind): category_name for ind, category_name in enumerate(self.category_names)
            }
    else:
        self.category_names = list(self.category_mapping.values())

2.4 TorchVision:

def load_model(self):
    try:
        import torchvision
    except ImportError:
        raise ImportError(
            "torchvision is not installed. Please run 'pip install -U torchvision to use this "
            "torchvision models'"
        )

    # set model
    try:
        from sahi.utils.torch import torch

        model = self.config_path
        model.load_state_dict(torch.load(self.model_path))
        model.eval()
        model = model.to(self.device)
        self.model = model
    except Exception as e:
        raise Exception(f"Failed to load model from {self.model_path}. {e}")

    # set category_mapping
    from sahi.utils.torchvision import COCO_CLASSES

    if self.category_mapping is None:
        category_names = {str(i): COCO_CLASSES[i] for i in range(len(COCO_CLASSES))}
        self.category_mapping = category_names

3.perform_inference():

Bu fonksiyonda 3 aşamada oluşmaktadır.

a. Kütüphanenin import edilmesi gerekiyor.

b. Resimlerin size değerinin güncellenmesi lazım.

c. Modelin tahmin kodlarının yazılması gerekiyor.

3.1 Mmdet:

def perform_inference(self, image: np.ndarray, image_size: int = None):
    """
    Prediction is performed using self.model and the prediction result is set to self._original_predictions.
    Args:
        image: np.ndarray
            A numpy array that contains the image to be predicted. 3 channel image should be in RGB order.
        image_size: int
            Inference input size.
    """
    try:
        import mmdet
    except ImportError:
        raise ImportError(
            'Please run "pip install -U mmcv mmdet" ' "to install MMDetection first for MMDetection inference."
        )

    # Confirm model is loaded
    assert self.model is not None, "Model is not loaded, load it by calling .load_model()"

    # Supports only batch of 1
    from mmdet.apis import inference_detector

    # update model image size
    if image_size is not None:
        warnings.warn("Set 'image_size' at DetectionModel init.", DeprecationWarning)
        self.model.cfg.data.test.pipeline[1]["img_scale"] = (image_size, image_size)

    # perform inference
    if isinstance(image, np.ndarray):
        # https://github.com/obss/sahi/issues/265
        image = image[:, :, ::-1]
    # compatibility with sahi v0.8.15
    if not isinstance(image, list):
        image = [image]
    prediction_result = inference_detector(self.model, image)

    self._original_predictions = prediction_result

3.2 Yolov5:

def perform_inference(self, image: np.ndarray, image_size: int = None):
    """
    Prediction is performed using self.model and the prediction result is set to self._original_predictions.
    Args:
        image: np.ndarray
            A numpy array that contains the image to be predicted. 3 channel image should be in RGB order.
        image_size: int
            Inference input size.
    """
    try:
        import yolov5
    except ImportError:
        raise ImportError('Please run "pip install -U yolov5" ' "to install YOLOv5 first for YOLOv5 inference.")

    # Confirm model is loaded
    assert self.model is not None, "Model is not loaded, load it by calling .load_model()"

    if image_size is not None:
        warnings.warn("Set 'image_size' at DetectionModel init.", DeprecationWarning)
        prediction_result = self.model(image, size=image_size)
    elif self.image_size is not None:
        prediction_result = self.model(image, size=self.image_size)
    else:
        prediction_result = self.model(image)

    self._original_predictions = prediction_result

3.3 Detectron2:

def perform_inference(self, image: np.ndarray, image_size: int = None):
    """
    Prediction is performed using self.model and the prediction result is set to self._original_predictions.
    Args:
        image: np.ndarray
            A numpy array that contains the image to be predicted. 3 channel image should be in RGB order.
    """
    try:
        import detectron2
    except ImportError:
        raise ImportError("Please install detectron2 via `pip install detectron2`")

    # confirm image_size is not provided
    if image_size is not None:
        warnings.warn("Set 'image_size' at DetectionModel init.")

    # Confirm model is loaded
    if self.model is None:
        raise RuntimeError("Model is not loaded, load it by calling .load_model()")

    if isinstance(image, np.ndarray) and self.model.input_format == "BGR":
        # convert RGB image to BGR format
        image = image[:, :, ::-1]

    prediction_result = self.model(image)

    self._original_predictions = prediction_result

3.4 TorchVision:

def perform_inference(self, image: np.ndarray, image_size: int = None):
    """
    Prediction is performed using self.model and the prediction result is set to self._original_predictions.
    Args:
        image: np.ndarray
            A numpy array that contains the image to be predicted. 3 channel image should be in RGB order.
        image_size: int
            Inference input size.
    """
    if self.model is None:
        raise ValueError("model not loaded.")

    from sahi.utils.torchvision import numpy_to_torch, resize_image

    if self.image_size is not None:
        image = resize_image(image, self.image_size)
        image = numpy_to_torch(image)
        prediction_result = self.model([image])

    else:
        prediction_result = self.model([image])

    self._original_predictions = prediction_result

4.num_categories():

Bu fonksiyonda tahmin edilen kategorilerin sayısını döndürmesi isteniyor.

4.1 Mmdet:

def num_categories(self):
    """
    Returns number of categories
    """
    if isinstance(self.model.CLASSES, str):
        num_categories = 1
    else:
        num_categories = len(self.model.CLASSES)
    return num_categories

4.2 Yolov5:

def num_categories(self):
    """
    Returns number of categories
    """
    return len(self.model.names)

4.3 Detectron2:

def num_categories(self):
    """
    Returns number of categories
    """
    num_categories = len(self.category_mapping)
    return num_categories

4.4 TorchVision:

def num_categories(self):
    """
    Returns number of categories
    """
    return len(self.category_mapping)

5.has_mask():

Bu fonksiyonda tahmin edilen kategorilerin maskleri olup olmadığını döndürmesi isteniyor.

5.1 Mmdet:

def has_mask(self):
    """
    Returns if model output contains segmentation mask
    """
    has_mask = self.model.with_mask
    return has_mask```
5.2 Yolov5:

5.2 Yolov5:

def has_mask(self):
    """
    Returns if model output contains segmentation mask
    """
    has_mask = self.model.with_mask
    return has_mask

5.3 Detectron2:

if get_bbox_from_bool_mask(mask) is not None:
    bbox = None
else:
    continue

5.4 TorchVision:

def has_mask(self):
    """
    Returns if model output contains segmentation mask
    """
    return self.model.with_mask

6.category_names():

Bu fonksiyonda tahmin edilen kategorilerin isimlerini döndürmesi isteniyor.

6.1 Mmdet:

def category_names(self):
    if type(self.model.CLASSES) == str:
        # https://github.com/open-mmlab/mmdetection/pull/4973
        return (self.model.CLASSES,)
    else:
        return self.model.CLASSES

6.2 Yolov5:

def category_names(self):
    return self.model.names

6.3 Detectron2:

# detectron2 category mapping
if self.category_mapping is None:
    try:  # try to parse category names from metadata
        metadata = MetadataCatalog.get(cfg.DATASETS.TRAIN[0])
        category_names = metadata.thing_classes
        self.category_names = category_names

6.4 TorchVision:

def category_names(self):
    return self.category_mapping

7._create_object_prediction_list_from_original_predictions():

Bu fonksiyon da bir şablon üzerinden kodlama yapmanız sizin için daha rahat olacaktır. Fonksiyonunu altına direk bunu yazabilirsiniz.

original_predictions = self._original_predictions

# compatilibty for sahi v0.8.15
if isinstance(shift_amount_list[0], int):
    shift_amount_list = [shift_amount_list]
if full_shape_list is not None and isinstance(full_shape_list[0], int):
    full_shape_list = [full_shape_list]

Bundan sonra modeliniz tahminleme yaptıktan sonra bbox,mask,category_id, category_name ve score değerleri döndürmesi isteniyor. Bu değerleri object_prediction değişkeninin içindeki none değerleri yerine yazmanız gerekiyor. Aşağıdaki şablon yapısını da bozmamanız istenmektedir.

    object_prediction = ObjectPrediction(
        bbox=None,
        bool_mask=None,
        category_id=None,
        category_name=sNone,
        shift_amount=shift_amount,
        score=None,
        full_shape=full_shape,
    )
    object_prediction_list.append(object_prediction)

# detectron2 DefaultPredictor supports single image
object_prediction_list_per_image = [object_prediction_list]

self._object_prediction_list_per_image = object_prediction_list_per_image

7.1 Mmdet:

def _create_object_prediction_list_from_original_predictions(
    self,
    shift_amount_list: Optional[List[List[int]]] = [[0, 0]],
    full_shape_list: Optional[List[List[int]]] = None,
):
    """
    self._original_predictions is converted to a list of prediction.ObjectPrediction and set to
    self._object_prediction_list_per_image.
    Args:
        shift_amount_list: list of list
            To shift the box and mask predictions from sliced image to full sized image, should
            be in the form of List[[shift_x, shift_y],[shift_x, shift_y],...]
        full_shape_list: list of list
            Size of the full image after shifting, should be in the form of
            List[[height, width],[height, width],...]
    """
    original_predictions = self._original_predictions
    category_mapping = self.category_mapping

    # compatilibty for sahi v0.8.15
    shift_amount_list = fix_shift_amount_list(shift_amount_list)
    full_shape_list = fix_full_shape_list(full_shape_list)

    # parse boxes and masks from predictions
    num_categories = self.num_categories
    object_prediction_list_per_image = []
    for image_ind, original_prediction in enumerate(original_predictions):
        shift_amount = shift_amount_list[image_ind]
        full_shape = None if full_shape_list is None else full_shape_list[image_ind]

        if self.has_mask:
            boxes = original_prediction[0]
            masks = original_prediction[1]
        else:
            boxes = original_prediction

        object_prediction_list = []

        # process predictions
        for category_id in range(num_categories):
            category_boxes = boxes[category_id]
            if self.has_mask:
                category_masks = masks[category_id]
            num_category_predictions = len(category_boxes)

            for category_predictions_ind in range(num_category_predictions):
                bbox = category_boxes[category_predictions_ind][:4]
                score = category_boxes[category_predictions_ind][4]
                category_name = category_mapping[str(category_id)]

                # ignore low scored predictions
                if score < self.confidence_threshold:
                    continue

                # parse prediction mask
                if self.has_mask:
                    bool_mask = category_masks[category_predictions_ind]
                else:
                    bool_mask = None

                # fix negative box coords
                bbox[0] = max(0, bbox[0])
                bbox[1] = max(0, bbox[1])
                bbox[2] = max(0, bbox[2])
                bbox[3] = max(0, bbox[3])

                # fix out of image box coords
                if full_shape is not None:
                    bbox[0] = min(full_shape[1], bbox[0])
                    bbox[1] = min(full_shape[0], bbox[1])
                    bbox[2] = min(full_shape[1], bbox[2])
                    bbox[3] = min(full_shape[0], bbox[3])

                # ignore invalid predictions
                if not (bbox[0] < bbox[2]) or not (bbox[1] < bbox[3]):
                    logger.warning(f"ignoring invalid prediction with bbox: {bbox}")
                    continue

                object_prediction = ObjectPrediction(
                    bbox=bbox,
                    category_id=category_id,
                    score=score,
                    bool_mask=bool_mask,
                    category_name=category_name,
                    shift_amount=shift_amount,
                    full_shape=full_shape,
                )
                object_prediction_list.append(object_prediction)
        object_prediction_list_per_image.append(object_prediction_list)
    self._object_prediction_list_per_image = object_prediction_list_per_image

7.2 Yolov5:

def _create_object_prediction_list_from_original_predictions(
    self,
    shift_amount_list: Optional[List[List[int]]] = [[0, 0]],
    full_shape_list: Optional[List[List[int]]] = None,
):
    """
    self._original_predictions is converted to a list of prediction.ObjectPrediction and set to
    self._object_prediction_list_per_image.
    Args:
        shift_amount_list: list of list
            To shift the box and mask predictions from sliced image to full sized image, should
            be in the form of List[[shift_x, shift_y],[shift_x, shift_y],...]
        full_shape_list: list of list
            Size of the full image after shifting, should be in the form of
            List[[height, width],[height, width],...]
    """
    original_predictions = self._original_predictions

    # compatilibty for sahi v0.8.15
    shift_amount_list = fix_shift_amount_list(shift_amount_list)
    full_shape_list = fix_full_shape_list(full_shape_list)

    # handle all predictions
    object_prediction_list_per_image = []
    for image_ind, image_predictions_in_xyxy_format in enumerate(original_predictions.xyxy):
        shift_amount = shift_amount_list[image_ind]
        full_shape = None if full_shape_list is None else full_shape_list[image_ind]
        object_prediction_list = []

        # process predictions
        for prediction in image_predictions_in_xyxy_format.cpu().detach().numpy():
            x1 = int(prediction[0])
            y1 = int(prediction[1])
            x2 = int(prediction[2])
            y2 = int(prediction[3])
            bbox = [x1, y1, x2, y2]
            score = prediction[4]
            category_id = int(prediction[5])
            category_name = self.category_mapping[str(category_id)]

            # fix negative box coords
            bbox[0] = max(0, bbox[0])
            bbox[1] = max(0, bbox[1])
            bbox[2] = max(0, bbox[2])
            bbox[3] = max(0, bbox[3])

            # fix out of image box coords
            if full_shape is not None:
                bbox[0] = min(full_shape[1], bbox[0])
                bbox[1] = min(full_shape[0], bbox[1])
                bbox[2] = min(full_shape[1], bbox[2])
                bbox[3] = min(full_shape[0], bbox[3])

            # ignore invalid predictions
            if not (bbox[0] < bbox[2]) or not (bbox[1] < bbox[3]):
                logger.warning(f"ignoring invalid prediction with bbox: {bbox}")
                continue

            object_prediction = ObjectPrediction(
                bbox=bbox,
                category_id=category_id,
                score=score,
                bool_mask=None,
                category_name=category_name,
                shift_amount=shift_amount,
                full_shape=full_shape,
            )
            object_prediction_list.append(object_prediction)
        object_prediction_list_per_image.append(object_prediction_list)

    self._object_prediction_list_per_image = object_prediction_list_per_image

7.3 Detectron2:

def _create_object_prediction_list_from_original_predictions(
    self,
    shift_amount_list: Optional[List[List[int]]] = [[0, 0]],
    full_shape_list: Optional[List[List[int]]] = None,
):
    """
    self._original_predictions is converted to a list of prediction.ObjectPrediction and set to
    self._object_prediction_list_per_image.
    Args:
        shift_amount_list: list of list
            To shift the box and mask predictions from sliced image to full sized image, should
            be in the form of List[[shift_x, shift_y],[shift_x, shift_y],...]
        full_shape_list: list of list
            Size of the full image after shifting, should be in the form of
            List[[height, width],[height, width],...]
    """
    original_predictions = self._original_predictions

    # compatilibty for sahi v0.8.15
    if isinstance(shift_amount_list[0], int):
        shift_amount_list = [shift_amount_list]
    if full_shape_list is not None and isinstance(full_shape_list[0], int):
        full_shape_list = [full_shape_list]

    # parse boxes, masks, scores, category_ids from predictions
    boxes = original_predictions["instances"].pred_boxes.tensor.tolist()
    scores = original_predictions["instances"].scores.tolist()
    category_ids = original_predictions["instances"].pred_classes.tolist()

    # check if predictions contain mask
    try:
        masks = original_predictions["instances"].pred_masks.tolist()
    except AttributeError:
        masks = None

    # create object_prediction_list
    object_prediction_list_per_image = []
    object_prediction_list = []

    # detectron2 DefaultPredictor supports single image
    shift_amount = shift_amount_list[0]
    full_shape = None if full_shape_list is None else full_shape_list[0]

    for ind in range(len(boxes)):
        score = scores[ind]
        if score < self.confidence_threshold:
            continue

        category_id = category_ids[ind]

        if masks is None:
            bbox = boxes[ind]
            mask = None
        else:
            mask = np.array(masks[ind])

            # check if mask is valid
            if get_bbox_from_bool_mask(mask) is not None:
                bbox = None
            else:
                continue

        object_prediction = ObjectPrediction(
            bbox=bbox,
            bool_mask=mask,
            category_id=category_id,
            category_name=self.category_mapping[str(category_id)],
            shift_amount=shift_amount,
            score=score,
            full_shape=full_shape,
        )
        object_prediction_list.append(object_prediction)

    # detectron2 DefaultPredictor supports single image
    object_prediction_list_per_image = [object_prediction_list]

    self._object_prediction_list_per_image = object_prediction_list_per_image

7.4 TorchVision: Not: TorchVision kütüphanesinin geliştirilmeye devam etmektedir.

Owner
Kadir Nar
Junior Deep Learning Engineer at @gesund-ai
Kadir Nar
A comprehensive list of published machine learning applications to cosmology

ml-in-cosmology This github attempts to maintain a comprehensive list of published machine learning applications to cosmology, organized by subject ma

George Stein 290 Dec 29, 2022
The Illinois repository for Climatehack (https://climatehack.ai/). We won 1st place!

Climatehack This is the repository for Illinois's Climatehack Team. We earned first place on the leaderboard with a final score of 0.87992. An overvie

Jatin Mathur 20 Jun 09, 2022
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

Real-ESRGAN Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data Ported from https://github.com/xinntao/Real-ESRGAN Depend

Holy Wu 44 Dec 27, 2022
Algebraic effect handlers in Python

PyEffect: Algebraic effects in Python What IDK. Usage effects.handle(operation, handlers=None) effects.set_handler(effect, handler) Supported effects

Greg Werbin 5 Dec 27, 2021
基于tensorflow 2.x的图片识别工具集

Classification.tf2 基于tensorflow 2.x的图片识别工具集 功能 粗粒度场景图片分类 细粒度场景图片分类 其他场景图片分类 模型部署 tensorflow serving本地推理和docker部署 tensorRT onnx ... 数据集 https://hyper.a

Wei Qi 1 Nov 03, 2021
Image reconstruction done with untrained neural networks.

PyTorch Deep Image Prior An implementation of image reconstruction methods from Deep Image Prior (Ulyanov et al., 2017) in PyTorch. The point of the p

Atiyo Ghosh 192 Nov 30, 2022
Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechanism for Generalized Face Presentation Attack Detection

LMFD-PAD Note This is the official repository of the paper: LMFD-PAD: Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechani

28 Dec 02, 2022
Fast Neural Representations for Direct Volume Rendering

Fast Neural Representations for Direct Volume Rendering Sebastian Weiss, Philipp Hermüller, Rüdiger Westermann This repository contains the code and s

Sebastian Weiss 20 Dec 03, 2022
Sample code and notebooks for Vertex AI, the end-to-end machine learning platform on Google Cloud

Google Cloud Vertex AI Samples Welcome to the Google Cloud Vertex AI sample repository. Overview The repository contains notebooks and community conte

Google Cloud Platform 560 Dec 31, 2022
TensorFlow implementation for Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How

Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How TensorFlow implementation for Bayesian Modeling and Unce

Shen Lab at Texas A&M University 8 Sep 02, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

76 Jan 03, 2023
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2021/11/19 Thank you for your interest in our work. We have uploaded the code of our MTUNet to help peers conduct further research on i

dotman 92 Dec 25, 2022
[CVPR 2021] NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning

NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning Project Page | Paper | Supplemental material #1 | Supplement

KAIST VCLAB 49 Nov 24, 2022
Implementation of Online Label Smoothing in PyTorch

Online Label Smoothing Pytorch implementation of Online Label Smoothing (OLS) presented in Delving Deep into Label Smoothing. Introduction As the abst

83 Dec 14, 2022
Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation: Work In Progress, Results can't be replicated yet with the m

Yad Konrad 196 Aug 30, 2022
Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning.

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive

<a href=[email protected](SZ)"> 7 Dec 16, 2021
Official implementation of paper "Query2Label: A Simple Transformer Way to Multi-Label Classification".

Introdunction This is the official implementation of the paper "Query2Label: A Simple Transformer Way to Multi-Label Classification". Abstract This pa

Shilong Liu 274 Dec 28, 2022
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
💊 A 3D Generative Model for Structure-Based Drug Design (NeurIPS 2021)

A 3D Generative Model for Structure-Based Drug Design Coming soon... Citation @inproceedings{luo2021sbdd, title={A 3D Generative Model for Structu

Shitong Luo 118 Jan 05, 2023
Experiments with differentiable stacks and queues in PyTorch

Please use stacknn-core instead! StackNN This project implements differentiable stacks and queues in PyTorch. The data structures are implemented in s

Will Merrill 141 Oct 06, 2022