TensorFlow implementation for Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How

Overview

Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How

TensorFlow implementation for Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How

Yuning You, Yue Cao, Tianlong Chen, Zhangyang Wang, Yang Shen

In ICLR 2022.

Overview

In this repository, we perform Bayesian modeling in learning to optimize techniques, to address the practical need of accessment and quantification of optimization uncertainty. Experiments are conducted on optimizations in test functions, privacy attacks and protein docking.

Environments

Create conda environment via:

conda env create -f environment.yml
cd sonnet_modified_files

and then copy files: basic.py, gated_rnn.py into the conda environment directory as:

cp gate_rnn.py $CONDAENV_PATH/envs/tf_gpu_1.14/lib/python3.7/site-packages/sonnet/python/modules/
cp basic.py $CONDAENV_PATH/envs/tf_gpu_1.14/lib/python3.7/site-packages/sonnet/python/modules/

Training & Evaluation

mkdir ./weights; mkdir ./logs; cd src

Stage 1 training:

python train_dm_rs_cl.py --problem $problem_name --stage 1 --save_path ../weights/${problem_name}_stage1.ckpt

Stage 2 Bayesian training:

python train_dm_rs_cl.py --problem $problem_name --stage 2 --restore_path ../weights/${problem_name}_stage1.ckpt --save_path ../weights/${problem_name}_stage2.ckpt --lambda1 0.1

Evaluation:

python evaluate.py --problem $problem_name --path ../weights/${problem_name}_stage2.ckpt --output ../logs/${problem_name}.log --mode test

where

  • $problem_name = rastrigin06, rastrigin12, rastrigin18, rastrigin24, rastrigin30 means train on test function rastrigin on dim=6, 12, 18, 24, 30, respectively.
  • $problem_name = ackley06, ackley12, ackley18, ackley24, ackley30.
  • $problem_name = griewank06, griewank12, griewank18, griewank24, griewank30.
  • $problem_name = privacy_attack means privacy_attack experiment.
  • $problem_name = protein_dock means protein docking experiment.

and you can select $lambda1 from {10, 1, 0.1, 0.01, 0.001}.

Citation

If you use this code for you research, please cite our paper.

TBD
Owner
Shen Lab at Texas A&M University
Shen Lab at Texas A&M University
Bayesian optimization in PyTorch

BoTorch is a library for Bayesian Optimization built on PyTorch. BoTorch is currently in beta and under active development! Why BoTorch ? BoTorch Prov

2.5k Dec 31, 2022
[CVPR2021] UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicles

UAV-Human Official repository for CVPR2021: UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicle Paper arXiv Res

129 Jan 04, 2023
Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized C

Sam Bond-Taylor 139 Jan 04, 2023
Few-shot Neural Architecture Search

One-shot Neural Architecture Search uses a single supernet to approximate the performance each architecture. However, this performance estimation is super inaccurate because of co-adaption among oper

Yiyang Zhao 38 Oct 18, 2022
simple demo codes for Learning to Teach with Dynamic Loss Functions

Learning to Teach with Dynamic Loss Functions This repo contains the simple demo for the NeurIPS-18 paper: Learning to Teach with Dynamic Loss Functio

Lijun Wu 15 Dec 30, 2021
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

80 Dec 27, 2022
Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN. Classifying the type of movement amongst six activity categories - Guillaume Chevalier

LSTMs for Human Activity Recognition Human Activity Recognition (HAR) using smartphones dataset and an LSTM RNN. Classifying the type of movement amon

Guillaume Chevalier 3.1k Dec 30, 2022
YOLOX-RMPOLY

本算法为适应robomaster比赛,而改动自矩形识别的yolox算法。 基于旷视科技YOLOX,实现对不规则四边形的目标检测 TODO 修改onnx推理模型 更改/添加标注: 1.yolox/models/yolox_polyhead.py: 1.1继承yolox/models/yolo_

3 Feb 25, 2022
The official repository for Deep Image Matting with Flexible Guidance Input

FGI-Matting The official repository for Deep Image Matting with Flexible Guidance Input. Paper: https://arxiv.org/abs/2110.10898 Requirements easydict

Hang Cheng 51 Nov 10, 2022
Azua - build AI algorithms to aid efficient decision-making with minimum data requirements.

Project Azua 0. Overview Many modern AI algorithms are known to be data-hungry, whereas human decision-making is much more efficient. The human can re

Microsoft 197 Jan 06, 2023
【Arxiv】Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution

SANet Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 to

36 Jan 05, 2023
Torch-based tool for quantizing high-dimensional vectors using additive codebooks

Trainable multi-codebook quantization This repository implements a utility for use with PyTorch, and ideally GPUs, for training an efficient quantizer

Daniel Povey 41 Jan 07, 2023
Barbershop: GAN-based Image Compositing using Segmentation Masks (SIGGRAPH Asia 2021)

Barbershop: GAN-based Image Compositing using Segmentation Masks Barbershop: GAN-based Image Compositing using Segmentation Masks Peihao Zhu, Rameen A

Peihao Zhu 928 Dec 30, 2022
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Hugging Face 34 Dec 10, 2022
Repository for "Improving evidential deep learning via multi-task learning," published in AAAI2022

Improving evidential deep learning via multi task learning It is a repository of AAAI2022 paper, “Improving evidential deep learning via multi-task le

deargen 11 Nov 19, 2022
PyTorch Code for the paper "VSE++: Improving Visual-Semantic Embeddings with Hard Negatives"

Improving Visual-Semantic Embeddings with Hard Negatives Code for the image-caption retrieval methods from VSE++: Improving Visual-Semantic Embeddings

Fartash Faghri 441 Dec 05, 2022
Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"

StyleGAR TODO: add arxiv link Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction TODO: for test Currently, some model

155 Oct 27, 2022
A NSFW content filter.

Project_Nfilter A NSFW content filter. With a motive of minimizing the spreads and leakage of NSFW contents on internet and access to others devices ,

1 Jan 20, 2022