[CVPR 2021] NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning

Overview

NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning

Project Page | Paper | Supplemental material #1 | Supplemental material #2 | Presentation Video

Hyunho Ha ([email protected]), Joo Ho Lee ([email protected]), Andreas Meuleman ([email protected]) and Min H. Kim ([email protected])

Institute: KAIST Visual Computing Laboratory

If you use our code for your academic work, please cite our paper:

@InProceedings{Ha_2021_CVPR,
	author = {Hyunho Ha and Joo Ho Lee and Andreas Meuleman and Min H. Kim},
	title = {NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning},
	booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
	month = {June},
	year = {2021}
}

Installation

Our implementation is based on the voxel hashing (https://github.com/niessner/VoxelHashing) and TextureFusion repository (https://github.com/KAIST-VCLAB/texturefusion).

To run our code, first obtain the entire source codes from voxel hashing repository, including the Visual Studio project file. Then, in VoxelHashing/DepthSensingCUDA/, replace the folders Source/ and Shaders/ as well as the configuration files zParameters*.txt by the content of our repository. Therefore, our source code inherits the dependency of the Voxel Hashing project as follows.

Our work requires:

Our code has been developed with Microsoft Visual Studio 2013 (VC++ 12) and Windows 10 (10.0.19041, build 19041) on a machine equipped with Intel i9-10920X (RAM: 64GB), NVIDIA TITAN RTX (RAM: 24GB). The main function is in normalFusion_main.cpp.

Data

We provide the "fountain" dataset (originally created by Zhou and Koltun) compatible with our implementation (link: http://vclab.kaist.ac.kr/cvpr2020p1/fountain_all.zip).

Usage

Our program reads parameters from three files and you can change the program setting by changing them.

  • zParametersDefault.txt

  • zParametersTrackingDefault.txt

  • zParametersWarpingDefault.txt

  • zParametersEnhancementDefault.txt

You can run our program with the provided fountain dataset.

Please set s_sensorIdx as 9 and s_binaryDumpSensorFile[0] as the fountain folder in zParametersDefault.txt.

Our program produces mesh with two textures (diffuse albedo and normal). If you want to further enhance mesh using normal texture, please refer to the paper: "Efficiently Combining Positions and Normals for Precise 3D Geometry", Nehab et al., ACM TOG, 2005.

License

Hyunho Ha, Joo Ho Lee, Andreas Meuleman, and Min H. Kim have developed this software and related documentation (the "Software"); confidential use in source form of the Software, without modification, is permitted provided that the following conditions are met:

Neither the name of the copyright holder nor the names of any contributors may be used to endorse or promote products derived from the Software without specific prior written permission.

The use of the software is for Non-Commercial Purposes only. As used in this Agreement, "Non-Commercial Purpose" means for the purpose of education or research in a non-commercial organisation only. "Non-Commercial Purpose" excludes, without limitation, any use of the Software for, as part of, or in any way in connection with a product (including software) or service which is sold, offered for sale, licensed, leased, published, loaned or rented. If you require a license for a use excluded by this agreement, please email [[email protected]].

Warranty: KAIST-VCLAB MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. KAIST-VCLAB SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.

Note that Our implementation inherits the original license of "Voxel Hashing" codes (CC BY-NC-SA 3.0).

Please refer to license.txt for more details.

Contact

If you have any questions, please feel free to contact us.

Hyunho Ha ([email protected])

Joo Ho Lee ([email protected])

Andreas Meuleman ([email protected])

Min H. Kim ([email protected])

Owner
KAIST VCLAB
KAIST Visual Computing Laboratory
KAIST VCLAB
[TIP 2021] SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction

SADRNet Paper link: SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction Requirements python

Multimedia Computing Group, Nanjing University 99 Dec 30, 2022
This is an official implementation of the paper "Distance-aware Quantization", accepted to ICCV2021.

PyTorch implementation of DAQ This is an official implementation of the paper "Distance-aware Quantization", accepted to ICCV2021. For more informatio

CV Lab @ Yonsei University 36 Nov 04, 2022
Mememoji - A facial expression classification system that recognizes 6 basic emotions: happy, sad, surprise, fear, anger and neutral.

a project built with deep convolutional neural network and ❤️ Table of Contents Motivation The Database The Model 3.1 Input Layer 3.2 Convolutional La

Jostine Ho 761 Dec 05, 2022
Official Pytorch Implementation of GraphiT

GraphiT: Encoding Graph Structure in Transformers This repository implements GraphiT, described in the following paper: Grégoire Mialon*, Dexiong Chen

Inria Thoth 80 Nov 27, 2022
PPO is a very popular Reinforcement Learning algorithm at present.

PPO is a very popular Reinforcement Learning algorithm at present. OpenAI takes PPO as the current baseline algorithm. We use the PPO algorithm to train a policy to give the best action in any situat

Rosefintech 11 Aug 23, 2021
TensorFlow implementation of the paper "Hierarchical Attention Networks for Document Classification"

Hierarchical Attention Networks for Document Classification This is an implementation of the paper Hierarchical Attention Networks for Document Classi

Quoc-Tuan Truong 83 Dec 05, 2022
Bottom-up attention model for image captioning and VQA, based on Faster R-CNN and Visual Genome

bottom-up-attention This code implements a bottom-up attention model, based on multi-gpu training of Faster R-CNN with ResNet-101, using object and at

Peter Anderson 1.3k Jan 09, 2023
GANfolk: Using AI to create portraits of fictional people to sell as NFTs

GANfolk are AI-generated renderings of fictional people. Each image in the collection was created by a pair of Generative Adversarial Networks (GANs) with names and backstories also created with AI.

Robert A. Gonsalves 32 Dec 02, 2022
Build a medical knowledge graph based on Unified Language Medical System (UMLS)

UMLS-Graph Build a medical knowledge graph based on Unified Language Medical System (UMLS) Requisite Install MySQL Server 5.6 and import UMLS data int

Donghua Chen 6 Dec 25, 2022
Deep Compression for Dense Point Cloud Maps.

DEPOCO This repository implements the algorithms described in our paper Deep Compression for Dense Point Cloud Maps. How to get started (using Docker)

Photogrammetry & Robotics Bonn 67 Dec 06, 2022
Optimizing Deeper Transformers on Small Datasets

DT-Fixup Optimizing Deeper Transformers on Small Datasets Paper published in ACL 2021: arXiv Detailed instructions to replicate our results in the pap

16 Nov 14, 2022
An Unsupervised Detection Framework for Chinese Jargons in the Darknet

An Unsupervised Detection Framework for Chinese Jargons in the Darknet This repo is the Python 3 implementation of 《An Unsupervised Detection Framewor

7 Nov 08, 2022
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Benedek Rozemberczki 201 Nov 09, 2022
Generating Digital Painting Lighting Effects via RGB-space Geometry (SIGGRAPH2020/TOG2020)

Project PaintingLight PaintingLight is a project conducted by the Style2Paints team, aimed at finding a method to manipulate the illumination in digit

651 Dec 29, 2022
Spatial Temporal Graph Convolutional Networks (ST-GCN) for Skeleton-Based Action Recognition in PyTorch

Reminder ST-GCN has transferred to MMSkeleton, and keep on developing as an flexible open source toolbox for skeleton-based human understanding. You a

sijie yan 1.1k Dec 25, 2022
Java and SHACL code commented in the paper "Towards compliance checking in reified I/O logic via SHACL" submitted to ICAIL 2021

shRIOL The subfolder shRIOL contains Java files to execute the SHACL files on the OWL ontology. To compile the Java files: "javac -cp ./src/;./lib/* -

1 Dec 06, 2022
Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

Wang jiahao 3 Oct 31, 2022
LiDAR R-CNN: An Efficient and Universal 3D Object Detector

LiDAR R-CNN: An Efficient and Universal 3D Object Detector Introduction This is the official code of LiDAR R-CNN: An Efficient and Universal 3D Object

TuSimple 295 Jan 05, 2023
📚 Papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks.

papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks. Papermill lets you: parameterize notebooks execute notebooks This

nteract 5.1k Jan 03, 2023
PyTorch implementation of the ACL, 2021 paper Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks.

Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks This repo contains the PyTorch implementation of the ACL, 2021 pa

Rabeeh Karimi Mahabadi 98 Dec 28, 2022