Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

Overview

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation:


Work In Progress, Results can't be replicated yet with the models here

  • UPDATE: April 28th: Skip_Connection added thanks to the reviewers, check model model-tiramasu-67-func-api.py

feel free to open issues for suggestions:)

  • Keras2 + TF used for the recent updates, which might cause with some confilict from previous version I had in here

What is The One Hundred Layers Tiramisu?

  • A state of art (as in Jan 2017) Semantic Pixel-wise Image Segmentation model that consists of a fully deep convolutional blocks with downsampling, skip-layer then to Upsampling architecture.
  • An extension of DenseNets to deal with the problem of semantic segmentation.

Fully Convolutional DensNet = (Dense Blocks + Transition Down Blocks) + (Bottleneck Blocks) + (Dense Blocks + Transition Up Blocks) + Pixel-Wise Classification layer

model

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio) arXiv:1611.09326 cs.CV

Requirements:


  • Keras==2.0.2
  • tensorflow-gpu==1.0.1
  • or just go ahead and do: pip install -r requirements.txt

Model Strucure:


  • DenseBlock: BatchNormalization + Activation [ Relu ] + Convolution2D + Dropout

  • TransitionDown: BatchNormalization + Activation [ Relu ] + Convolution2D + Dropout + MaxPooling2D

  • TransitionUp: Deconvolution2D (Convolutions Transposed)

model-blocks


Model Params:


  • RMSprop is used with Learnining Rete of 0.001 and weight decay 0.995
    • However, using those got me nowhere, I switched to SGD and started tweaking the LR + Decay myself.
  • There are no details given about BatchNorm params, again I have gone with what the Original DenseNet paper had suggested.
  • Things to keep in mind perhaps:
    • the weight inti: he_uniform (maybe change it around?)
    • the regualzrazation too agressive?

Repo (explanation):


  • Download the CamVid Dataset as explained below:
    • Use the data_loader.py to crop images to 224, 224 as in the paper implementation.
  • run model-tiramasu-67-func-api.py or python model-tirmasu-56.py for now to generate each models file.
  • run python train-tirmasu.py to start training:
    • Saves best checkpoints for the model and data_loader included for the CamVidDataset
  • helper.py contains two methods normalized and one_hot_it, currently for the CamVid Task

Dataset:


  1. In a different directory run this to download the dataset from original Implementation.

    • git clone [email protected]:alexgkendall/SegNet-Tutorial.git
    • copy the /CamVid to here, or change the DataPath in data_loader.py to the above directory
  2. The run python data_loader.py to generate these two files:

    • /data/train_data.npz/ and /data/train_label.npz
    • This will make it easy to process the model over and over, rather than waiting the data to be loaded into memory.

  • Experiments:
Models Acc Loss Notes
FC-DenseNet 67 model-results model-results 150 Epochs, RMSPROP

To Do:


[x] FC-DenseNet 103
[x] FC-DenseNet 56
[x] FC-DenseNet 67
[ ] Replicate Test Accuracy CamVid Task
[ ] Replicate Test Accuracy GaTech Dataset Task
[ ] Requirements
  • Original Results Table:

    model-results

Owner
Yad Konrad
indie researcher in areas of Machine Learning, Linguistics & Program Synthesis.
Yad Konrad
Random Forests for Regression with Missing Entries

Random Forests for Regression with Missing Entries These are specific codes used in the article: On the Consistency of a Random Forest Algorithm in th

Irving Gómez-Méndez 1 Nov 15, 2021
Neural Re-rendering for Full-frame Video Stabilization

NeRViS: Neural Re-rendering for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 9 Jun 17, 2022
deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and different optimization choices

deep_nn_model_with_only_python_100%_test_accuracy deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and differen

0 Aug 28, 2022
X-VLM: Multi-Grained Vision Language Pre-Training

X-VLM: learning multi-grained vision language alignments Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts. Yan Zeng, Xi

Yan Zeng 286 Dec 23, 2022
TransMorph: Transformer for Medical Image Registration

TransMorph: Transformer for Medical Image Registration keywords: Vision Transformer, Swin Transformer, convolutional neural networks, image registrati

Junyu Chen 180 Jan 07, 2023
Unofficial implementation of Pix2SEQ

Unofficial-Pix2seq: A Language Modeling Framework for Object Detection Unofficial implementation of Pix2SEQ. Please use this code with causion. Many i

159 Dec 12, 2022
Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator

DRL-robot-navigation Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator. Using Twin Delayed Deep Deterministic Policy Gra

87 Jan 07, 2023
Deep Image Matting implementation in PyTorch

Deep Image Matting Deep Image Matting paper implementation in PyTorch. Differences "fc6" is dropped. Indices pooling. "fc6" is clumpy, over 100 millio

Yang Liu 724 Dec 27, 2022
Motion and Shape Capture from Sparse Markers

MoSh++ This repository contains the official chumpy implementation of mocap body solver used for AMASS: AMASS: Archive of Motion Capture as Surface Sh

Nima Ghorbani 135 Dec 23, 2022
Omnidirectional camera calibration in python

Omnidirectional Camera Calibration Key features pure python initial solution based on A Toolbox for Easily Calibrating Omnidirectional Cameras (Davide

Thomas Pönitz 12 Nov 22, 2022
Chinese Mandarin tts text-to-speech 中文 (普通话) 语音 合成 , by fastspeech 2 , implemented in pytorch, using waveglow as vocoder,

Chinese mandarin text to speech based on Fastspeech2 and Unet This is a modification and adpation of fastspeech2 to mandrin(普通话). Many modifications t

291 Jan 02, 2023
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

ChongjianGE 94 Dec 11, 2022
Implementation of BI-RADS-BERT & The Advantages of Section Tokenization.

BI-RADS BERT Implementation of BI-RADS-BERT & The Advantages of Section Tokenization. This implementation could be used on other radiology in house co

1 May 17, 2022
Graph Analysis From Scratch

Graph Analysis From Scratch Goal In this notebook we wanted to implement some functionalities to analyze a weighted graph only by using algorithms imp

Arturo Ghinassi 0 Sep 17, 2022
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Rishikesh (ऋषिकेश) 31 Dec 08, 2022
Reference code for the paper CAMS: Color-Aware Multi-Style Transfer.

CAMS: Color-Aware Multi-Style Transfer Mahmoud Afifi1, Abdullah Abuolaim*1, Mostafa Hussien*2, Marcus A. Brubaker1, Michael S. Brown1 1York University

Mahmoud Afifi 36 Dec 04, 2022
"NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search".

NAS-Bench-301 This repository containts code for the paper: "NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search". The

AutoML-Freiburg-Hannover 57 Nov 30, 2022
OCR Post Correction for Endangered Language Texts

📌 Coming soon: an update to the software including features from our paper on semi-supervised OCR post-correction, to be published in the Transaction

Shruti Rijhwani 96 Dec 31, 2022
Collection of in-progress libraries for entity neural networks.

ENN Incubator Collection of in-progress libraries for entity neural networks: Neural Network Architectures for Structured State Entity Gym: Abstractio

25 Dec 01, 2022