Official implementation of paper "Query2Label: A Simple Transformer Way to Multi-Label Classification".

Overview

PWC PWC PWC PWC

Introdunction

This is the official implementation of the paper "Query2Label: A Simple Transformer Way to Multi-Label Classification".

Abstract

This paper presents a simple and effective approach to solving the multi-label classification problem. The proposed approach leverages Transformer decoders to query the existence of a class label. The use of Transformer is rooted in the need of extracting local discriminative features adaptively for different labels, which is a strongly desired property due to the existence of multiple objects in one image. The built-in cross-attention module in the Transformer decoder offers an effective way to use label embeddings as queries to probe and pool class-related features from a feature map computed by a vision backbone for subsequent binary classifications. Compared with prior works, the new framework is simple, using standard Transformers and vision backbones, and effective, consistently outperforming all previous works on five multi-label classification data sets, including MS-COCO, PASCAL VOC, NUS-WIDE, and Visual Genome. Particularly, we establish 91.3% mAP on MS-COCO. We hope its compact structure, simple implementation, and superior performance serve as a strong baseline for multi-label classification tasks and future studies.

fig

Results on MS-COCO:

fig

Quick start

  1. (optional) Star this repo.

  2. Clone this repo:

git clone [email protected]:SlongLiu/query2labels.git
cd query2labels
  1. Install cuda, PyTorch and torchvision.

Please make sure they are compatible. We test our models on two envs and other configs may also work:

cuda==11, torch==1.9.0, torchvision==0.10.0, python==3.7.3
or
cuda==10.2, torch==1.6.0, torchvision==0.7.0, python==3.7.3
  1. Install other needed packages.
pip install -r requirments.txt
  1. Data preparation.

Download MS-COCO 2014 and modify the path in lib/dataset/cocodataset.py: line 24, 25.

  1. Download pretrained models.

You could download pretrained models from this link. See more details below.

  1. Run!
python q2l_infer.py -a modelname --config /path/to/json/file --resume /path/to/pkl/file [other args]
e.g.
python q2l_infer.py -a 'Q2L-R101-448' --config "pretrained/Q2L-R101-448/config_new.json" -b 16 --resume 'pretrained/Q2L-R101-448/checkpoint.pkl'

pretrianed model

Modelname mAP link(Tsinghua-cloud)
Q2L-R101-448 84.9 this link
Q2L-R101-576 86.5 this link
Q2L-TResL-448 87.3 this link
Q2L-TResL_22k-448 89.2 this link
Q2L-SwinL-384 90.5 this link
Q2L-CvT_w24-384 91.3 this link

Training

Training scripts will be available later.

BibTex

@misc{liu2021query2label,
      title={Query2Label: A Simple Transformer Way to Multi-Label Classification}, 
      author={Shilong Liu and Lei Zhang and Xiao Yang and Hang Su and Jun Zhu},
      year={2021},
      eprint={2107.10834},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgement

We thank the authors of ASL, TResNet, detr, CvT, and Swin-Transformer for their great works and codes. Thanks to @mrT23 for sharing training tricks and providing a useful script for training.

Owner
Shilong Liu
A spicy chicken. www.lsl.zone
Shilong Liu
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Jan 02, 2023
Reference models and tools for Cloud TPUs.

Cloud TPUs This repository is a collection of reference models and tools used with Cloud TPUs. The fastest way to get started training a model on a Cl

5k Jan 05, 2023
MADT: Offline Pre-trained Multi-Agent Decision Transformer

MADT: Offline Pre-trained Multi-Agent Decision Transformer A link to our paper can be found on Arxiv. Overview Official codebase for Offline Pre-train

Linghui Meng 51 Dec 21, 2022
(ICCV 2021 Oral) Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation.

DARS Code release for the paper "Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation", ICCV 2021

CVMI Lab 58 Jan 01, 2023
Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel order of RGB and BGR. Simple Channel Converter for ONNX.

scc4onnx Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel

Katsuya Hyodo 16 Dec 22, 2022
[CVPR 2022] Unsupervised Image-to-Image Translation with Generative Prior

GP-UNIT - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Unsupervised Image-to-

Shuai Yang 125 Jan 03, 2023
Semantic Segmentation of images using PixelLib with help of Pascalvoc dataset trained with Deeplabv3+ framework.

CARscan- Approach 1 - Segmentation of images by detecting contours. It failed because in images with elements along with cars were also getting detect

Padmanabha Banerjee 5 Jul 29, 2021
X-modaler is a versatile and high-performance codebase for cross-modal analytics.

X-modaler X-modaler is a versatile and high-performance codebase for cross-modal analytics. This codebase unifies comprehensive high-quality modules i

910 Dec 28, 2022
Supplementary code for the paper "Meta-Solver for Neural Ordinary Differential Equations" https://arxiv.org/abs/2103.08561

Meta-Solver for Neural Ordinary Differential Equations Towards robust neural ODEs using parametrized solvers. Main idea Each Runge-Kutta (RK) solver w

Julia Gusak 25 Aug 12, 2021
Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper

TransGanFormer (wip) Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. I

Phil Wang 146 Dec 06, 2022
Functional deep learning

Pipeline abstractions for deep learning. Full documentation here: https://lf1-io.github.io/padl/ PADL: is a pipeline builder for PyTorch. may be used

LF1 101 Nov 09, 2022
Official implementation of ACMMM'20 paper 'Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework'

Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework Official code for paper, Self-supervised Video Representation Le

Li Tao 103 Dec 21, 2022
Code for "Adversarial attack by dropping information." (ICCV 2021)

AdvDrop Code for "AdvDrop: Adversarial Attack to DNNs by Dropping Information(ICCV 2021)." Human can easily recognize visual objects with lost informa

Ranjie Duan 52 Nov 10, 2022
Official PyTorch implementation of PS-KD

Self-Knowledge Distillation with Progressive Refinement of Targets (PS-KD) Accepted at ICCV 2021, oral presentation Official PyTorch implementation of

61 Dec 28, 2022
This repository contains the PyTorch implementation of the paper STaCK: Sentence Ordering with Temporal Commonsense Knowledge appearing at EMNLP 2021.

STaCK: Sentence Ordering with Temporal Commonsense Knowledge This repository contains the pytorch implementation of the paper STaCK: Sentence Ordering

Deep Cognition and Language Research (DeCLaRe) Lab 23 Dec 16, 2022
OpenAi's gym environment wrapper to vectorize them with Ray

Ray Vector Environment Wrapper You would like to use Ray to vectorize your environment but you don't want to use RLLib ? You came to the right place !

Pierre TASSEL 15 Nov 10, 2022
A library for researching neural networks compression and acceleration methods.

A library for researching neural networks compression and acceleration methods.

Intel Labs 100 Dec 29, 2022
Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Aviv Gabbay 41 Nov 29, 2022
Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL"

Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL" This is the official codebase for Pessimism Meets I

3 Sep 19, 2022