The Illinois repository for Climatehack (https://climatehack.ai/). We won 1st place!

Overview

Climatehack

This is the repository for Illinois's Climatehack Team. We earned first place on the leaderboard with a final score of 0.87992.

Final Leaderboard

An overview of our approach can be found here.

Example predictions:

Setup

conda env create -f environment.yaml
conda activate climatehack
python -m ipykernel install --user --name=climatehack

First, download data by running data/download_data.ipynb. Alternatively, you can find preprocessed data files here. Save them into the data folder. We used train.npz and test.npz. They consist of data temporally cropped from 10am to 4pm UK time across the entire dataset. You could also use data_good_sun_2020.npz and data_good_sun_2021.npz, which consist of all samples where the sun elevation is at least 10 degrees. Because these crops produced datasets that could fit in-memory, all our dataloaders work in-memory.

Best Submission

Our best submission earned scores exceeding 0.85 on the Climatehack leaderboard. It is relatively simple and uses the fastai library to pick a base model, optimizer, and learning rate scheduler. After some experimentation, we chose xse_resnext50_deeper. We turned it into a UNET and trained it. More info is in the slides.

To train:

cd best-submission
bash train.sh

To submit, first move the trained model xse_resnext50_deeper.pth into best-submission/submission.

cd best-submission
python doxa_cli.py user login
bash submit.sh

Also, check out best-submission/test_and_visualize.ipynb to test the model and visualize results in a nice animation. This is how we produced the animations found in figs/model_predictions.gif.

Experiments

We conducted several experiments that showed improvements on a strong baseline. The baseline was OpenClimateFix's skillful nowcasting repo, which itself is a implementation of Deepmind's precipitation forecasting GAN. This baseline is more-or-less copied to experiments/dgmr-original. One important difference is that instead of training the GAN, we just train the generator. This was doing well for us and training the GAN had much slower convergence. This baseline will actually train to a score greater than 0.8 on the Climatehack leaderboard. We didn't have time to properly test these experiments on top of our best model, but we suspect they would improve results. The experiments are summarized below:

Experiment Description Results
DCT-Trick Inspired by this, we use the DCT to turn 128x128 -> 64x16x16 and IDCT to turn 64x16x16 -> 128x128. This leads to a shallower network that is autoregressive at fewer spatial resolutions. We believe this is the first time this has been done with UNETs. A fast implementation is in common/utils.py:create_conv_dct_filter and common/utils.py:get_idct_filter. 1.8-2x speedup, small <0.005 performance drop
Denoising We noticed a lot of blocky artifacts in predictions. These artifacts are reminiscent of JPEG/H.264 compression artifacts. We show a comparison of these artifacts in the slides. We found a pretrained neural network to fix them. This can definitely be done better, but we show a proof-of-concept. No performance drop, small visual improvement. The slides have an example.
CoordConv Meteorological phenomenon are correlated with geographic coordinates. We add 2 input channels for the geographic coordinates in OSGB form. +0.0072 MS-SSIM improvement
Optical Flow Optical flow does well for the first few timesteps. We add 2 input channels for the optical flow vectors. +0.0034 MS-SSIM improvement

The folder experiments/climatehack-submission was used to submit these experiments.

cd experiments/climatehack-submission
python doxa_cli.py user login
bash submit.sh

Use experiments/test_and_visualize.ipynb to test the model and visualize results in a nice animation.

Owner
Jatin Mathur
Undergrad at UIUC. Currently working on satellites with LASSI (https://lassiaero.web.illinois.edu/). Previously @astranis, @robinhood, @fractal, @ncsa
Jatin Mathur
The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

This repository is the official PyTorch implementation of SAINT. Find the paper on arxiv SAINT: Improved Neural Networks for Tabular Data via Row Atte

Gowthami Somepalli 284 Dec 21, 2022
Save-restricted-v-3 - Save restricted content Bot For telegram

Save restricted content Bot Contact: Telegram A stable telegram bot to get restr

DEVANSH 11 Dec 21, 2022
Python-based Informatics Kit for Analysing Chemical Units

INSTALLATION Python-based Informatics Kit for the Analysis of Chemical Units Step 1: Make a conda environment: conda create -n pikachu python=3.9 cond

47 Dec 23, 2022
Graph Convolutional Networks for Temporal Action Localization (ICCV2019)

Graph Convolutional Networks for Temporal Action Localization This repo holds the codes and models for the PGCN framework presented on ICCV 2019 Graph

Runhao Zeng 318 Dec 06, 2022
Toontown House CT Edition

Toontown House: Classic Toontown House Classic source that should just work. ❓ W

Open Source Toontown Servers 5 Jan 09, 2022
An open-source online reverse dictionary.

An open-source online reverse dictionary.

THUNLP 6.3k Jan 09, 2023
[CVPR 2022 Oral] Balanced MSE for Imbalanced Visual Regression https://arxiv.org/abs/2203.16427

Balanced MSE Code for the paper: Balanced MSE for Imbalanced Visual Regression Jiawei Ren, Mingyuan Zhang, Cunjun Yu, Ziwei Liu CVPR 2022 (Oral) News

Jiawei Ren 267 Jan 01, 2023
Code for "Diffusion is All You Need for Learning on Surfaces"

Source code for "Diffusion is All You Need for Learning on Surfaces", by Nicholas Sharp Souhaib Attaiki Keenan Crane Maks Ovsjanikov NOTE: the linked

Nick Sharp 247 Dec 28, 2022
[CVPR 2022] Official PyTorch Implementation for "Reference-based Video Super-Resolution Using Multi-Camera Video Triplets"

Reference-based Video Super-Resolution (RefVSR) Official PyTorch Implementation of the CVPR 2022 Paper Project | arXiv | RealMCVSR Dataset This repo c

Junyong Lee 151 Dec 30, 2022
Public repository containing materials used for Feed Forward (FF) Neural Networks article.

Art041_NN_Feed_Forward Public repository containing materials used for Feed Forward (FF) Neural Networks article. -- Illustration of a very simple Fee

SolClover 2 Dec 29, 2021
Automatic caption evaluation metric based on typicality analysis.

SeMantic and linguistic UndeRstanding Fusion (SMURF) Automatic caption evaluation metric described in the paper "SMURF: SeMantic and linguistic UndeRs

Joshua Feinglass 6 Jan 09, 2022
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 02, 2023
THIS IS THE **OLD** PYMC PROJECT. PLEASE USE PYMC3 INSTEAD:

Introduction Version: 2.3.8 Authors: Chris Fonnesbeck Anand Patil David Huard John Salvatier Web site: https://github.com/pymc-devs/pymc Documentation

PyMC 7.2k Jan 07, 2023
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Mutian He 19 Oct 14, 2022
Datasets, Transforms and Models specific to Computer Vision

vision Datasets, Transforms and Models specific to Computer Vision Installation First install the nightly version of OneFlow python3 -m pip install on

OneFlow 68 Dec 07, 2022
Subpopulation detection in high-dimensional single-cell data

PhenoGraph for Python3 PhenoGraph is a clustering method designed for high-dimensional single-cell data. It works by creating a graph ("network") repr

Dana Pe'er Lab 42 Sep 05, 2022
Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder

Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder Authors: - Eashan Adhikarla - Dan Luo - Dr. Brian D. Davison Abstract Many

Eashan Adhikarla 4 Dec 25, 2022
Database Reasoning Over Text project for ACL paper

Database Reasoning over Text This repository contains the code for the Database Reasoning Over Text paper, to appear at ACL2021. Work is performed in

Facebook Research 320 Dec 12, 2022
An example of semantic segmentation using tensorflow in eager execution.

Semantic segmentation using Tensorflow eager execution Requirement Python 2.7+ Tensorflow-gpu OpenCv H5py Scikit-learn Numpy Imgaug Train with eager e

Iñigo Alonso Ruiz 25 Sep 29, 2022
A PyTorch implementation of "Predict then Propagate: Graph Neural Networks meet Personalized PageRank" (ICLR 2019).

APPNP ⠀ A PyTorch implementation of Predict then Propagate: Graph Neural Networks meet Personalized PageRank (ICLR 2019). Abstract Neural message pass

Benedek Rozemberczki 329 Dec 30, 2022