List some popular DeepFake models e.g. DeepFake, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, SimSwap, CihaNet, etc.

Overview

deepfake-models

List some popular DeepFake models e.g. DeepFake, CihaNet, SimSwap, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, SimSwap, etc.

In order to protect the authors' intellectual property rights, I will not upload their codes, pre-trained models or anything else. If necessary, please click the code link switching to their GitHub page to download.

Here are some faceswapped videos for CihaNet.

Deepfakes

  • Deepfake is the most popular face swapping application on GitHub. [code] | [forum]

    However, it is a subject-aware model, which means you need train a unique model for a specific person. For example, you should trained a CageNet for Nicolas Cage and a SwiftNet for Taylor Swift separately, then swapped the faces between these two persons.

CihaNet

  • One-stage Context and Identity Hallucination Network. ACM MM 2021 [paper]

    Yinglu Liu, Mingcan Xiang, Hailin Shi, Tao Mei.

    Propose a one-stage face swapping network, which can divide the id-areas and co-areas by hallucination maps and learn the corresponding features effectively. The network can be trained with large-scale unlabeled data, without annotation dependency.

FaceController

  • FaceController: Controllable Attribute Editing for Face in the Wild. AAAI 2021 [paper]

    Zhiliang Xu, Xiyu Yu, Zhibin Hong, Zhen Zhu, Junyu Han, Jingtuo Liu, Errui Ding, Xiang Bai.

    decouple identity, expression, pose, and illumination using 3D priors; separate texture and colors by using region-wise style codes. All the information is embedded into adversarial learning by our identity-style normalization module. Disentanglement losses are proposed to enhance the generator to extract information independently from each attribute.

FaceInpainter

  • FaceInpainter High Fidelity Face Adaptation to Heterogeneous Domains. CVPR 2021 [paper]

    Jia Li, Zhaoyang Li, Jie Cao, Xingguang Song, Ran He.** propose a novel two-stage framework named FaceInpainter to implement controllable Identity-Guided Face Inpainting (IGFI) under heterogeneous domains. Concretely, by explicitly disentangling foreground and background of the target face, the first stage focuses on adaptive face fitting to the fixed background via a Styled Face Inpainting Network (SFI-Net), with 3D priors and texture code of the target, as well as identity factor of the source face.

SimSwap

  • SimSwap: An Efficient Framework For High Fidelity Face Swapping. ACM MM 2020 [paper] | [code]

    Renwang Chen, Xuanhong Chen, Bingbing Ni1, and Yanhao Ge.

    Simswap propose the Weak Feature Matching Loss which efficiently helps their framework to preserve the facial attributes in an implicit way. Experimental results show that they can preserve attributes better than previous state-of-the-art methods.

FaceShifter

  • FaceShifter: Towards High Fidelity And Occlusion Aware Face Swapping. CVPR 2020 [paper] | [homepage]

    Lingzhi Li, Jianmin Bao, Hao Yang, Dong Chen, Fang Wen.

    Faceshifter is a novel two-stage framework for high fidelity and occlusion aware face-swapping. It's able to generate high fidelity identity preserving face swap results and, in comparison to previous methods, deal with facial occlusions using a second synthesis stage consisting of a Heuristic Error Acknowledging Refinement Network (HEAR-Net).

    • in the first stage, generate the swapped face in high-fidelity by exploiting and integrating the target attributes thoroughly and adaptively.
    • in the second stage, propose a novel Heuristic Error Acknowledging Refinement Network (HEAR-Net) to address the challenging facial occlusions.

FSGAN

  • FSGAN: Subject Agnostic Face Swapping and Reenactment. ICCV 2019 [paper] | [code] | [homepage-Nirkin] | [homepage-Hassner]

    Yuval Nirkin, Yosi Keller, Tal Hassner.

    Unlike previous work, FSGAN is subject agnostic and can be applied to pairs of faces without requiring training on those faces. Besides, they introduced new loss functions for better performance.

IPGAN

  • Towards Open-Set Identity Preserving Face Synthesis. CVPR 2018 [paper] | [homepage]

    Jianmin Bao, Dong Chen, Fang Wen, Houqiang Li, and Gang Hua.

    propose an Open-Set Identity Preserving Generative Adversarial Network framework for disentangling the identity and attributes of faces, synthesizing faces from the recombined identity and attributes.

FaceSwap-MarekKowalski

  • FaceSwap is an app that have originally created as an exercise for students in "Mathematics in Multimedia". [code] | [homepage]

    This is a 3D-based method. It uses face alignment, 3D face template, Gauss-Newton optimization, and image blending to swap the face of a person seen by the camera with a face of a person in a provided image.

FaceSwap-Nirkin et al.

  • On face segmentation, face swapping, and face perception.. F&G 2018 [paper] | [code] [homepage]

    Yuval Nirkin, Iacopo Masi, Anh Tran Tuan, Tal Hassner, and Gerard Medioni.

    • Instead of tailoring systems for face segmentation, as others previously proposed, this work shows that a standard fully convolutional network (FCN) can achieve remarkably fast and accurate segmentation, provided that it is trained on a rich enough example set.
    • use special image segmentation to enable robust face-swapping under unprecedented conditions.
    • fit 3D face shapes
    • measure the effect of intra- and inter-subject face swapping on recognition. Generally speaking, intra-subject swapped faces remain as recognizable as their sources, while better face-swapping produces less recognizable inter-subject results.
Owner
Mingcan Xiang
CE Ph.D. Student @ UMass Amherst
Mingcan Xiang
Learning to Identify Top Elo Ratings with A Dueling Bandits Approach

Learning to Identify Top Elo Ratings We propose two algorithms MaxIn-Elo and MaxIn-mElo to solve the top players identification on the transitive and

2 Jan 14, 2022
Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning

Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning. Circuit Training is an open-s

Google Research 479 Dec 25, 2022
VOGUE: Try-On by StyleGAN Interpolation Optimization

VOGUE is a StyleGAN interpolation optimization algorithm for photo-realistic try-on. Top: shirt try-on automatically synthesized by our method in two different examples.

Wei ZHANG 66 Dec 09, 2022
meProp: Sparsified Back Propagation for Accelerated Deep Learning

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
A new test set for ImageNet

ImageNetV2 The ImageNetV2 dataset contains new test data for the ImageNet benchmark. This repository provides associated code for assembling and worki

186 Dec 18, 2022
CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing

CapsuleVOS This is the code for the ICCV 2019 paper CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing. Arxiv Link: https://a

53 Oct 27, 2022
Happywhale - Whale and Dolphin Identification Silver🥈 Solution (26/1588)

Kaggle-Happywhale Happywhale - Whale and Dolphin Identification Silver 🥈 Solution (26/1588) 竞赛方案思路 图像数据预处理-标志性特征图片裁剪:首先根据开源的标注数据训练YOLOv5x6目标检测模型,将训练集

Franxx 20 Nov 14, 2022
Reporting and Visualization for Hazardous Events

Reporting and Visualization for Hazardous Events

Jv Kyle Eclarin 2 Oct 03, 2021
BTC-Generator - BTC Generator With Python

Что такое BTC-Generator? Это генератор чеков всеми любимого @BTC_BANKER_BOT Для

DoomGod 3 Aug 24, 2022
IDRLnet, a Python toolbox for modeling and solving problems through Physics-Informed Neural Network (PINN) systematically.

IDRLnet IDRLnet is a machine learning library on top of PyTorch. Use IDRLnet if you need a machine learning library that solves both forward and inver

IDRL 105 Dec 17, 2022
Study of human inductive biases in CNNs and Transformers.

Are Convolutional Neural Networks or Transformers more like human vision? This repository contains the code and fine-tuned models of popular Convoluti

Shikhar Tuli 39 Dec 08, 2022
Repository for MDPGT

MD-PGT Repository for implementing and reproducing the results for the paper MDPGT: Momentum-based Decentralized Policy Gradient Tracking. Available E

Xian Yeow Lee 2 Dec 30, 2021
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Easy-to-use toolkit for retrieval-based Chatbot Recent Activity Our released RRS corpus can be found here. Our released BERT-FP post-training checkpoi

GMFTBY 32 Nov 13, 2022
implicit displacement field

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
Object detection and instance segmentation toolkit based on PaddlePaddle.

Object detection and instance segmentation toolkit based on PaddlePaddle.

9.3k Jan 02, 2023
Source code for Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning

Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning Official implementation of ACC, described in the paper "Adaptively Calibrated C

3 Sep 16, 2022
v objective diffusion inference code for JAX.

v-diffusion-jax v objective diffusion inference code for JAX, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The models

Katherine Crowson 186 Dec 21, 2022
Sparse-dense operators implementation for Paddle

Sparse-dense operators implementation for Paddle This module implements coo, csc and csr matrix formats and their inter-ops with dense matrices. Feel

北海若 3 Dec 17, 2022
Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method

C++/ROS Source Codes for "Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method" published in IEEE Trans. Intelligent Transportation Systems

Bai Li 88 Dec 23, 2022
Implementation supporting the ICCV 2017 paper "GANs for Biological Image Synthesis"

GANs for Biological Image Synthesis This codes implements the ICCV-2017 paper "GANs for Biological Image Synthesis". The paper and its supplementary m

Anton Osokin 95 Nov 25, 2022