Credit Fraud detection: Context: It is important that credit card companies are able to recognize fraudulent credit card transactions so that customers are not charged for items that they did not purchase. Dataset Location : This dataset could be found at https://www.kaggle.com/mlg-ulb/creditcardfraud This dataset (creditcard.csv) was provided by KAGGLE The dataset contains transactions made by credit cards in September 2013 by European cardholders. It contains only numerical input variables which are the result of a PCA transformation. Unfortunately, due to confidentiality issues, we cannot provide the original features and more background information about the data. Features V1, V2, … V28 are the principal components obtained with PCA, the only features which have not been transformed with PCA are 'Time' and 'Amount'. Feature 'Time' contains the seconds elapsed between each transaction and the first transaction in the dataset. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. Feature 'Class' is the response variable and it takes value 1 in case of fraud and 0 otherwise. This dataset is already preprocessed. I began with splitting the dataset into train and test sets with a split of 0.75:0.25, Did a brief analysis and checked that the dataset contains 99.8% of the values are labeled as not fraud and only 0.2% are labeled as fraud. I bootstrapped the data by upsampling the training dataset because if we had only a few positives relative to negatives, the training model will spend most of its time on negative examples and not learn enough from positive ones. Therefore I bootstrapped the data to make it balanced. Then I applied Random Forest with the number of trees = 20 and determined which were the most important features for our model. I followed with Logistic Regression Then finally I followed by a Gaussian Naive Bayes I tested all three models for accuracy, precision, recall and f1 score. The Random Forest model has better accuaracy and precision than the Logistic Regression and Gaussian Naive Bayes models, but Logistic regression has the best recall, yet Random Forest has the best f1 score which is the harmonic average between precision and recall.
Credit fraud detection in Python using a Jupyter Notebook
Overview
Video-based open-world segmentation
UVO_Challenge Team Alpes_runner Solutions This is an official repo for our UVO Challenge solutions for Image/Video-based open-world segmentation. Our
PyTorch implementation of SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching
SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching This is the official PyTorch implementation of SMODICE: Versatile Offline I
Pytorch Implementation of "Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation"
CRL_EGPG Pytorch Implementation of Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation We use contrastive loss implemented b
Best Practices on Recommendation Systems
Recommenders What's New (February 4, 2021) We have a new relase Recommenders 2021.2! It comes with lots of bug fixes, optimizations and 3 new algorith
The devkit of the nuPlan dataset.
The devkit of the nuPlan dataset.
Python Environment for Bayesian Learning
Pebl is a python library and command line application for learning the structure of a Bayesian network given prior knowledge and observations. Pebl in
Tree LSTM implementation in PyTorch
Tree-Structured Long Short-Term Memory Networks This is a PyTorch implementation of Tree-LSTM as described in the paper Improved Semantic Representati
Neural Style and MSG-Net
PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included
TensorFlow implementation of Deep Reinforcement Learning papers
Deep Reinforcement Learning in TensorFlow TensorFlow implementation of Deep Reinforcement Learning papers. This implementation contains: [1] Playing A
Instant Real-Time Example-Based Style Transfer to Facial Videos
FaceBlit: Instant Real-Time Example-Based Style Transfer to Facial Videos The official implementation of FaceBlit: Instant Real-Time Example-Based Sty
Unsupervised Feature Ranking via Attribute Networks.
FRANe Unsupervised Feature Ranking via Attribute Networks (FRANe) converts a dataset into a network (graph) with nodes that correspond to the features
GAN-STEM-Conv2MultiSlice - Exploring Generative Adversarial Networks for Image-to-Image Translation in STEM Simulation
GAN-STEM-Conv2MultiSlice GAN method to help covert lower resolution STEM images generated by convolution methods to higher resolution STEM images gene
Real-time 3D multi-person detection made easy with OpenPose and the ZED
OpenPose ZED This sample show how to simply use the ZED with OpenPose, the deep learning framework that detects the skeleton from a single 2D image. T
A collection of differentiable SVD methods and also the official implementation of the ICCV21 paper "Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?"
Differentiable SVD Introduction This repository contains: The official Pytorch implementation of ICCV21 paper Why Approximate Matrix Square Root Outpe
Relative Uncertainty Learning for Facial Expression Recognition
Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc
[CoRL 2021] A robotics benchmark for cross-embodiment imitation.
x-magical x-magical is a benchmark extension of MAGICAL specifically geared towards cross-embodiment imitation. The tasks still provide the Demo/Test
Minimalist Error collection Service compatible with Rollbar clients. Sentry or Rollbar alternative.
Minimalist Error collection Service Features Compatible with any Rollbar client(see https://docs.rollbar.com/docs). Just change the endpoint URL to yo
Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement (NeurIPS 2020)
MTTS-CAN: Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement Paper Xin Liu, Josh Fromm, Shwetak Patel, Daniel M
A large-scale benchmark for co-optimizing the design and control of soft robots, as seen in NeurIPS 2021.
Evolution Gym A large-scale benchmark for co-optimizing the design and control of soft robots. As seen in Evolution Gym: A Large-Scale Benchmark for E
Using LSTM write Tang poetry
本教程将通过一个示例对LSTM进行介绍。通过搭建训练LSTM网络,我们将训练一个模型来生成唐诗。本文将对该实现进行详尽的解释,并阐明此模型的工作方式和原因。并不需要过多专业知识,但是可能需要新手花一些时间来理解的模型训练的实际情况。为了节省时间,请尽量选择GPU进行训练。