Code for "The Box Size Confidence Bias Harms Your Object Detector"

Overview

The Box Size Confidence Bias Harms Your Object Detector - Code

Disclaimer: This repository is for research purposes only. It is designed to maintain reproducibility of the experiments described in "The Box Size Confidence Bias Harms Your Object Detector".

Setup

Download Annotations

Download COCO2017 annotations for train, val, and tes-dev from here and move them into the folder structure like this (alternatively change the config in config/all/paths/annotations/coco_2017.yaml to your local folder structure):

 .
 └── data
   └── coco
      └── annotations
        ├── instances_train2017.json
        ├── instances_val2017.json
        └── image_info_test-dev2017.json

Generate Detections

Generate detections on the train, val, and test-dev COCO2017 set, save them in the COCO file format as JSON files. Move detections to data/detections/MODEL_NAME, see config/all/detections/default_all.yaml for all the used detectors and to add other detectors.
The official implementations for the used detectors are:

Examples

CenterNet (Hourglass)

To generate the Detections for CenterNet with Hourglass backbone first follow the installation instructions. Then download ctdet_coco_hg.pth to /models from the official source Then generate the detections from the /src folder:

test_train.py python3 test_train.py ctdet --arch hourglass --exp_id Centernet_HG_train --dataset coco --load_model ../models/ctdet_coco_hg.pth ">
# On val
python3 test.py ctdet --arch hourglass --exp_id Centernet_HG_val --dataset coco --load_model ../models/ctdet_coco_hg.pth 
# On test-dev
python3 test.py ctdet --arch hourglass --exp_id Centernet_HG_test-dev --dataset coco --load_model ../models/ctdet_coco_hg.pth --trainval
# On train
sed '56s/.*/  split = "train"/' test.py > test_train.py
python3 test_train.py ctdet --arch hourglass --exp_id Centernet_HG_train --dataset coco --load_model ../models/ctdet_coco_hg.pth

The scaling for TTA is set via the "--test_scales LIST_SCALES" flag. So to generate only the 0.5x-scales: --test_scales 0.5

RetinaNet with MMDetection

To generate the de detection files using mmdet, first follow the installation instructions. Then download specific model weights, in this example retinanet_x101_64x4d_fpn_2x_coco_20200131-bca068ab.pth to PATH_TO_DOWNLOADED_WEIGHTS and execute the following commands:

python3 tools/test.py configs/retinanet/retinanet_x101_64x4d_fpn_2x_coco.py PATH_TO_DOWNLOADED_WEIGHTS/retinanet_x101_64x4d_fpn_2x_coco_20200131-bca068ab.pth  --eval bbox --eval-options jsonfile_prefix='PATH_TO_THIS_REPO/detections/retinanet_x101_64x4d_fpn_2x/train2017' --cfg-options data.test.img_prefix='PATH_TO_COCO_IMGS/train2017' data.test.ann_file='PATH_TO_COCO_ANNS/annotations/instances_train2017.json'
python3 tools/test.py configs/retinanet/retinanet_x101_64x4d_fpn_2x_coco.py PATH_TO_DOWNLOADED_WEIGHTS/retinanet_x101_64x4d_fpn_2x_coco_20200131-bca068ab.pth  --eval bbox --eval-options jsonfile_prefix='PATH_TO_THIS_REPO/detections/retinanet_x101_64x4d_fpn_2x/val2017' --cfg-options data.test.img_prefix='PATH_TO_COCO_IMGS/val2017' data.test.ann_file='PATH_TO_COCO_ANNS/annotations/instances_val2017.json'
python3 tools/test.py configs/retinanet/retinanet_x101_64x4d_fpn_2x_coco.py PATH_TO_DOWNLOADED_WEIGHTS/retinanet_x101_64x4d_fpn_2x_coco_20200131-bca068ab.pth  --eval bbox --eval-options jsonfile_prefix='PATH_TO_THIS_REPO/detections/retinanet_x101_64x4d_fpn_2x/test-dev2017' --cfg-options data.test.img_prefix='PATH_TO_COCO_IMGS/test2017' data.test.ann_file='PATH_TO_COCO_ANNS/annotations/image_info_test-dev2017.json'

Install Dependencies

pip3 install -r requirements.txt
Optional Dependencies
# Faster coco evaluation (used if available)
pip3 install fast_coco_eval
# Parallel multi-runs, if enough RAM is available (add "hydra/launcher=joblib" to every command with -m flag)
pip install hydra-joblib-launcher

Experiments

Most of the experiments are performed using the CenterNet(HG) detections to change the detector add detections=OTHER_DETECTOR, with the location of OTHER_DETECTORs detections specified in config/all/detections/default_all.yaml. The results of each experiment are saved to outputs/EXPERIMENT/DATE and multirun/EXPERIMENT/DATE in the case of a multirun (-m flag).

Figure 2: Calibration curve of histogram binning and modified version

# original histogram binning calibration curve
python3 create_plots.py -cn plot_org_hist_bin
# modified histogram binning calibration curve:
python3 create_plots.py -cn plot_mod_hist_bin

Table 1: Ablation of histogram binning modifications

python3 calibrate.py -cn ablate_modified_hist 

Table 2: Ablation of optimization metrics of calibration on validation split

python3 calibrate.py -cn ablate_metrics  "seed=range(4,14)" -m

Figure 3: Bounding box size bias on train and val data detections

Plot of calibration curve:

# on validation data
python3 create_plots.py -cn plot_miscal name="plot_miscal_val" split="val"
# on train data:
python3 create_plots.py -cn plot_miscal name="plot_miscal_train" split="train" calib.conf_bins=20

Table 3: Ablation of optimization metrics of calibration on training data

python3 calibrate.py -cn explore_train

Table 4: Effect of individual calibration on TTA

  1. Generate detections (on train and val split) for each scale-factor individually (CenterNet_HG_TTA_050, CenterNet_HG_TTA_075, CenterNet_HG_TTA_100, CenterNet_HG_TTA_125, CenterNet_HG_TTA_150) and for complete TTA (CenterNet_HG_TTA_ens)

  2. Generate individually calibrated detections..

    python3 calibrate.py -cn calibrate_train name="calibrate_train_tta" detector="CenterNet_HG_TTA_050","CenterNet_HG_TTA_075","CenterNet_HG_TTA_100","CenterNet_HG_TTA_125","CenterNet_HG_TTA_150","CenterNet_HG_TTA_ens" -m
  3. Copy calibrated detections from multirun/calibrate_train_tta/DATE/MODEL_NAME/quantile_spline_ontrain_opt_tradeoff_full/val/MODEL_NAME.json to data/calibrated/MODEL_NAME/val/results.json for MODEL_NAME in (CenterNet_HG_TTA_050, CenterNet_HG_TTA_075, CenterNet_HG_TTA_100, CenterNet_HG_TTA_125, CenterNet_HG_TTA_150).

  4. Generate TTA of calibrated detections

    python3 enseble.py -cn enseble

Figure 4: Ablation of IoU threshold

python3 calibrate.py -cn calibrate_train name="ablate_iou" "iou_threshold=range(0.5,0.96,0.05)" -m

Table 5: Calibration method on different model

python3 calibrate.py -cn calibrate_train name="calibrate_all_models" detector=LIST_ALL_MODELS -m

The test-dev predictions are found in multirun/calibrate_all_models/DATE/MODEL_NAME/quantile_spline_ontrain_opt_tradeoff_full/test/MODEL_NAME.json and can be evaluated using the official evaluation sever.

Supplementary Material

A.Figure 5 & 6: Performance Change for Extended Optimization Metrics

python3 calibrate.py -cn ablate_metrics_extended  "seed=range(4,14)" -m

A.Table 6: Influence of parameter search spaces on performance gain

# Results for B0, C0
python3 calibrate.py -cn calibrate_train
# Results for B0, C1
python3 calibrate.py -cn calibrate_train_larger_cbins
# Results for B0 union B1, C0
python3 calibrate.py -cn calibrate_train_larger_bbins
# Results for B0 union B1, C0 union C1
python3 calibrate.py -cn calibrate_train_larger_cbbins

A.Table 7: Influence of calibration method on different sized versions of EfficientDet

python3 calibrate.py -cn calibrate_train name="influence_modelsize" detector="Efficientdet_D0","Efficientdet_D1","Efficientdet_D2","Efficientdet_D3","Efficientdet_D4","Efficientdet_D5","Efficientdet_D6","Efficientdet_D7" -m
You might also like...
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

Opinionated code formatter, just like Python's black code formatter but for Beancount

beancount-black Opinionated code formatter, just like Python's black code formatter but for Beancount Try it out online here Features MIT licensed - b

a delightful machine learning tool that allows you to train, test and use models without writing code
a delightful machine learning tool that allows you to train, test and use models without writing code

igel A delightful machine learning tool that allows you to train/fit, test and use models without writing code Note I'm also working on a GUI desktop

Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.
Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Auto-ViML Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare) N

Code samples for my book "Neural Networks and Deep Learning"

Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod

Code for: https://berkeleyautomation.github.io/bags/

DeformableRavens Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the

Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166
Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166

Region Proportion Regularized Inference (RePRI) for Few-Shot Segmentation In this repo, we provide the code for our paper : "Few-Shot Segmentation Wit

Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"

gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing

Owner
Johannes G.
Johannes G.
using yolox+deepsort for object-tracker

YOLOX_deepsort_tracker yolox+deepsort实现目标跟踪 最新的yolox尝尝鲜~~(yolox正处在频繁更新阶段,因此直接链接yolox仓库作为子模块) Install Clone the repository recursively: git clone --rec

245 Dec 26, 2022
3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.

3DMV 3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans. This work is based on our ECCV'18 p

Владислав Молодцов 0 Feb 06, 2022
Cognate Detection Repository

Cognate Detection Repository Details This repository contains the data for two publications: Challenge Dataset of Cognates and False Friend Pairs from

Diptesh Kanojia 1 Apr 26, 2022
SGPT: Multi-billion parameter models for semantic search

SGPT: Multi-billion parameter models for semantic search This repository contains code, results and pre-trained models for the paper SGPT: Multi-billi

Niklas Muennighoff 182 Dec 29, 2022
Pointer-generator - Code for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Networks

Note: this code is no longer actively maintained. However, feel free to use the Issues section to discuss the code with other users. Some users have u

Abi See 2.1k Jan 04, 2023
Sign-to-Speech for Sign Language Understanding: A case study of Nigerian Sign Language

Sign-to-Speech for Sign Language Understanding: A case study of Nigerian Sign Language This repository contains the code, model, and deployment config

16 Oct 23, 2022
Implementing yolov4 target detection and tracking based on nao robot

Implementing yolov4 target detection and tracking based on nao robot

6 Apr 19, 2022
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

44 Dec 09, 2022
Pytorch version of SfmLearner from Tinghui Zhou et al.

SfMLearner Pytorch version This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghu

Clément Pinard 909 Dec 22, 2022
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Automated Side Channel Analysis of Media Software with Manifold Learning Official implementation of USENIX Security 2022 paper: Automated Side Channel

Yuanyuan Yuan 175 Jan 07, 2023
Unofficial Implement PU-Transformer

PU-Transformer-pytorch Pytorch unofficial implementation of PU-Transformer (PU-Transformer: Point Cloud Upsampling Transformer) https://arxiv.org/abs/

Lee Hyung Jun 7 Sep 21, 2022
This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking

SimpleTrack This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking. We are still working on writing t

TuSimple 189 Dec 26, 2022
Text-Based Ideal Points

Text-Based Ideal Points Source code for the paper: Text-Based Ideal Points by Keyon Vafa, Suresh Naidu, and David Blei (ACL 2020). Update (June 29, 20

Keyon Vafa 37 Oct 09, 2022
Code accompanying the paper "Knowledge Base Completion Meets Transfer Learning"

Knowledge Base Completion Meets Transfer Learning This code accompanies the paper Knowledge Base Completion Meets Transfer Learning published at EMNLP

14 Nov 27, 2022
Autonomous racing with the Anki Overdrive

Anki Autonomous Racing Autonomous racing with the Anki Overdrive. Using the Overdrive-Python API (https://github.com/xerodotc/overdrive-python) develo

3 Dec 11, 2022
A framework for attentive explainable deep learning on tabular data

🧠 kendrite A framework for attentive explainable deep learning on tabular data 💨 Quick start kedro run 🧱 Built upon Technology Description Links ke

Marnix Koops 3 Nov 06, 2021
A set of tools for converting a darknet dataset to COCO format working with YOLOX

darknet格式数据→COCO darknet训练数据目录结构(详情参见dataset/darknet): darknet ├── class.names ├── gen_config.data ├── gen_train.txt ├── gen_valid.txt └── images

RapidAI-NG 148 Jan 03, 2023
An official TensorFlow implementation of “CLCC: Contrastive Learning for Color Constancy” accepted at CVPR 2021.

CLCC: Contrastive Learning for Color Constancy (CVPR 2021) Yi-Chen Lo*, Chia-Che Chang*, Hsuan-Chao Chiu, Yu-Hao Huang, Chia-Ping Chen, Yu-Lin Chang,

Yi-Chen (Howard) Lo 58 Dec 17, 2022
ICSS - Interactive Continual Semantic Segmentation

Presentation This repository contains the code of our paper: Weakly-supervised c

Alteia 9 Jul 23, 2022