Implementing yolov4 target detection and tracking based on nao robot

Overview

基于nao机器人实现yolov4目标检测并进行跟踪

Introduction - 介绍

本项目为yolov4算法在nao机器人上的应用。

关于YOLOv4原理请参考YOLOv4原论文
本项目主要YOLOv4框架参考Bubbliiiing博主复现的代码
原博客链接:https://blog.csdn.net/weixin_44791964/article/details/106214657
复现代码链接:https://github.com/bubbliiiing/yolov4-pytorch
nao机器人单目测距方法请参考:https://wenku.baidu.com/view/bdc7eea7482fb4daa48d4b24.html
使用本项目前请先下载复现YOLOv4代码,并用py3.6文件夹中.py文件替换原文件中的同名文件


下图为目标跟踪流程图。由于nao机器人sdk库naoqi仅支持py2.7环境,本项目需分别运行py2.7环境下的"封装跟踪.py"文件和py3.6环境下的"predict.py"文件。
该项目可以让nao机器人转头寻找水瓶目标,检测到目标后通过单目测距向目标前进,当目标距离和nao小于1.09m时,程序完成运行。 image

Requirements - 必要条件

py2.7环境

numpy==1.16.6+vanilla
opencv-python==2.4.13.7
Pillow==6.2.2
pynaoqi==2.1.4.13

tips

naoqi库为软银官方提供的nao机器人sdk
naoqi库百度云链接:链接: https://pan.baidu.com/s/1kib-Bx9BjiOXCjrIycsIAw 提取码: 5k8b


py3.6环境

pytorch和cuda版本参考Bubbliiiing博文,其他缺少环境任意版本即可。 参考环境见py3.6环境文件(仅供参考,因为包含了很多自用无关的库)

Configuration - 配置

使用本项目前请先下载复现YOLOv4代码,并用py3.6文件夹中.py文件替换原文件中的同名文件
YOLOv4环境的配置方法:
1.将训练好的只检测水瓶类的权重文件放入model_data文件夹,并替换yolo.py中的初始路径
2.把model_data文件夹下的voc_classes.txt文件中物品类别改为只有bottle
3.更多问题详见Bubbliiiing博文。

本项目跟踪的只有水瓶类,所以训练时只提取了VOC2007数据集中的水瓶类别
只有水瓶类别的VOC2007数据集百度云链接:链接: https://pan.baidu.com/s/1d11f3lm2BvPtwxXuRYZ5HQ 提取码: w2kn
训练好的只检测水瓶类的权重百度云链接: 链接: https://pan.baidu.com/s/1Qt__j8RAOZeRbY8BjXitpA 提取码: 5u2b

Usage - 用法

配置好py3.6和py2.7环境后。先运行"封装跟踪.py"文件,再运行"predict.py"文件。
检测到的图片信息可见于img文件夹

Changelog - 更新日志

License - 版权信息

本项目证书为GPL-3.0 License,详见GPL-3.0 License.md

Scale-aware Automatic Augmentation for Object Detection (CVPR 2021)

SA-AutoAug Scale-aware Automatic Augmentation for Object Detection Yukang Chen, Yanwei Li, Tao Kong, Lu Qi, Ruihang Chu, Lei Li, Jiaya Jia [Paper] [Bi

DV Lab 182 Dec 29, 2022
Combine Tacotron2 and Hifi GAN to generate speech from text

EndToEndTextToSpeech Combine Tacotron2 and Hifi GAN to generate speech from text Download weights Hifi GAN - hifi_gan/checkpoint/ : pretrain 2.5M ste

Phạm Quốc Huy 1 Dec 18, 2021
SWA Object Detection

SWA Object Detection This project hosts the scripts for training SWA object detectors, as presented in our paper: @article{zhang2020swa, title={SWA

237 Nov 28, 2022
Learning Efficient Online 3D Bin Packing on Packing Configuration Trees

Learning Efficient Online 3D Bin Packing on Packing Configuration Trees This repository is being continuously updated, please stay tuned! Any code con

86 Dec 28, 2022
End-to-end Temporal Action Detection with Transformer. [Under review]

TadTR: End-to-end Temporal Action Detection with Transformer By Xiaolong Liu, Qimeng Wang, Yao Hu, Xu Tang, Song Bai, Xiang Bai. This repo holds the c

Xiaolong Liu 105 Dec 25, 2022
Online Multi-Granularity Distillation for GAN Compression (ICCV2021)

Online Multi-Granularity Distillation for GAN Compression (ICCV2021) This repository contains the pytorch codes and trained models described in the IC

Bytedance Inc. 299 Dec 16, 2022
The BCNet related data and inference model.

BCNet This repository includes the some source code and related dataset of paper BCNet: Learning Body and Cloth Shape from A Single Image, ECCV 2020,

81 Dec 12, 2022
g9.py - Torch interactive graphics

g9.py - Torch interactive graphics A Torch toy in the browser. Demo at https://srush.github.io/g9py/ This is a shameless copy of g9.js, written in Pyt

Sasha Rush 13 Nov 16, 2022
Code for ICCV2021 paper SPEC: Seeing People in the Wild with an Estimated Camera

SPEC: Seeing People in the Wild with an Estimated Camera [ICCV 2021] SPEC: Seeing People in the Wild with an Estimated Camera, Muhammed Kocabas, Chun-

Muhammed Kocabas 187 Dec 26, 2022
OMLT: Optimization and Machine Learning Toolkit

OMLT is a Python package for representing machine learning models (neural networks and gradient-boosted trees) within the Pyomo optimization environment.

C⚙G - Imperial College London 179 Jan 02, 2023
Learning Domain Invariant Representations in Goal-conditioned Block MDPs

Learning Domain Invariant Representations in Goal-conditioned Block MDPs Beining Han, Chongyi Zheng, Harris Chan, Keiran Paster, Michael R. Zhang, Jim

Chongyi Zheng 3 Apr 12, 2022
An unofficial PyTorch implementation of a federated learning algorithm, FedAvg.

Federated Averaging (FedAvg) in PyTorch An unofficial implementation of FederatedAveraging (or FedAvg) algorithm proposed in the paper Communication-E

Seok-Ju Hahn 123 Jan 06, 2023
SOLO and SOLOv2 for instance segmentation, ECCV 2020 & NeurIPS 2020.

SOLO: Segmenting Objects by Locations This project hosts the code for implementing the SOLO algorithms for instance segmentation. SOLO: Segmenting Obj

Xinlong Wang 1.5k Dec 31, 2022
Code for the Convolutional Vision Transformer (ConViT)

ConViT : Vision Transformers with Convolutional Inductive Biases This repository contains PyTorch code for ConViT. It builds on code from the Data-Eff

Facebook Research 418 Jan 06, 2023
Taichi Course Homework Template

太极图形课S1-标题部分 这个作业未来或将是你的开源项目,标题的内容可以来自作业中的核心关键词,让读者一眼看出你所完成的工作/做出的好玩demo 如果暂时未想好,起名时可以参考“太极图形课S1-xxx作业” 如下是作业(项目)展开说明的方法,可以帮大家理清思路,并且也对读者非常友好,请小伙伴们多多参

TaichiCourse 30 Nov 19, 2022
The 7th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop will be held on June 2022 in conjunction with CVPR 2022.

NTIRE 2022 - Image Inpainting Challenge Important dates 2022.02.01: Release of train data (input and output images) and validation data (only input) 2

Andrés Romero 37 Nov 27, 2022
Improving the robustness and performance of biomedical NLP models through adversarial training

RobustBioNLP Improving the robustness and performance of biomedical NLP models through adversarial training In this repository you can find suppliment

Milad Moradi 3 Sep 20, 2022
Unofficial pytorch implementation of the paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution"

DFSA Unofficial pytorch implementation of the ICCV 2021 paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution" (p

2 Nov 15, 2021
Code for Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021)

Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021) authors: Boris Knyazev, Michal Drozdzal, Graham Taylor, Adriana Romero-Soriano Overv

Facebook Research 462 Jan 03, 2023
VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition

VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition Usage First, install PyTorch 1.7.1+, torchvision 0.8.2

40 Dec 12, 2022