Opinionated code formatter, just like Python's black code formatter but for Beancount

Overview

beancount-black CircleCI

Opinionated code formatter, just like Python's black code formatter but for Beancount

Try it out online here

Features

  • MIT licensed - based on beancount-parser, a Lark based LALR(1) Beancount syntax parser
  • Extremely fast - 5K+ lines file generated by bean-example can be formatted in around 1 second
  • Section awareness - entries separated by Emac org symbol mark * will be formatted in groups without changing the overall structure
  • Comment preserving - comments are preserved and will be formatted as well
  • Auto column width - calculate maximum column width and adjust accordingly
  • Valid beancount file assumed - please notice that the formatter assumes the given beacnount file is valid, it doesn't not perform any kind of validation

Sponsor

The original project beancount-black was meant to be an internal tool built by Launch Platform LLC for

BeanHub logo

A modern accounting book service based on the most popular open source version control system Git and text-based double entry accounting book software Beancount. We realized adding new entries with BeanHub automatically over time makes beancount file a mess. So obviously, a strong code formatter is needed. While SaaS businesses won't be required to open source an internal tool like this, we still love that the service is only possible because of the open-source tool we are using. We think it would be greatly beneficial for the community to access a tool like this, so we've decided to open source it under MIT license, hope you find this tool useful 😄

Install

To install the formatter, simply run

pip install beancount-black

Usage

Run

bean-black /path/to/file.bean

Then the file will be formatted. Since this tool is still in its early stage, a backup file at <filepath>.backup will be created automatically by default just in case. The creation of backup files can be disabled by passing -n or --no-backup like this

bean-black -n /path/to/file.bean

It's highly recommended to use BeanHub, Git or other version control system to track your Beancount book files before running the formatter against them without a backup.

If you want to run the formatter programmatically, you can do this

import io

from beancount_parser.parser import make_parser
from beancount_black.formatter import Formatter

parser = make_parser()
formatter = Formatter()

tree = parser.parse(beancount_content)
output_file = io.StringIO()
formatter.format(tree, output_file)

Future features

  • Add argument for renaming account and commodity
  • Add argument for following other files from include statements and also format those files

Feedbacks, bugs reporting or feature requests are welcome 🙌 , just please open an issue. No guarantee we have time to deal with them, but will see what we can do.

Owner
Launch Platform
We build & launch innovative software products
Launch Platform
GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily

GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily Abstract Graph Neural Networks (GNNs) are widely used on a

10 Dec 20, 2022
Implement some metaheuristics and cost functions

Metaheuristics This repot implement some metaheuristics and cost functions. Metaheuristics JAYA Implement Jaya optimizer without constraints. Cost fun

Adri1G 1 Mar 23, 2022
PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules

Dynamic Routing Between Capsules - PyTorch implementation PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules from Sara Sabour,

Adam Bielski 475 Dec 24, 2022
Pyeventbus: a publish/subscribe event bus

pyeventbus pyeventbus is a publish/subscribe event bus for Python 2.7. simplifies the communication between python classes decouples event senders and

15 Apr 21, 2022
Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models

LMPBT Supplementary code for the Paper entitled ``Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models"

1 Sep 29, 2022
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Demo video: CVPR 2021 Oral: Single Channel Manipulation: Localized or attribu

Zongze Wu 267 Dec 30, 2022
"Domain Adaptive Semantic Segmentation without Source Data" (ACM MM 2021)

LDBE Pytorch implementation for two papers (the paper will be released soon): "Domain Adaptive Semantic Segmentation without Source Data", ACM MM2021.

benfour 16 Sep 28, 2022
(ImageNet pretrained models) The official pytorch implemention of the TPAMI paper "Res2Net: A New Multi-scale Backbone Architecture"

Res2Net The official pytorch implemention of the paper "Res2Net: A New Multi-scale Backbone Architecture" Our paper is accepted by IEEE Transactions o

Res2Net Applications 928 Dec 29, 2022
Unofficial pytorch implementation for Self-critical Sequence Training for Image Captioning. and others.

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 906 Jan 03, 2023
A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.

About This repository provides data and code for the paper: Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (subm

Appen Repos 86 Dec 07, 2022
FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection

FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection This repository contains an implementation of FCAF3D, a 3D object detection method introdu

SamsungLabs 153 Dec 29, 2022
Pytorch ImageNet1k Loader with Bounding Boxes.

ImageNet 1K Bounding Boxes For some experiments, you might wanna pass only the background of imagenet images vs passing only the foreground. Here, I'v

Amin Ghiasi 11 Oct 15, 2022
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
Distributing reference energies for SMIRNOFF implementations

Warning: This code is currently experimental and under active development. Is it not yet suitable for distribution or use as reference implementation.

Open Force Field Initiative 1 Dec 07, 2021
Learning from graph data using Keras

Steps to run = Download the cora dataset from this link : https://linqs.soe.ucsc.edu/data unzip the files in the folder input/cora cd code python eda

Mansar Youness 64 Nov 16, 2022
A PyTorch implementation of "Signed Graph Convolutional Network" (ICDM 2018).

SGCN â € A PyTorch implementation of Signed Graph Convolutional Network (ICDM 2018). Abstract Due to the fact much of today's data can be represented as

Benedek Rozemberczki 251 Nov 30, 2022
The official code of "SCROLLS: Standardized CompaRison Over Long Language Sequences".

SCROLLS This repository contains the official code of the paper: "SCROLLS: Standardized CompaRison Over Long Language Sequences". Links Official Websi

TAU NLP Group 39 Dec 23, 2022
Vector Quantization, in Pytorch

Vector Quantization - Pytorch A vector quantization library originally transcribed from Deepmind's tensorflow implementation, made conveniently into a

Phil Wang 665 Jan 08, 2023
COCO Style Dataset Generator GUI

A simple GUI-based COCO-style JSON Polygon masks' annotation tool to facilitate quick and efficient crowd-sourced generation of annotation masks and bounding boxes. Optionally, one could choose to us

Hans Krupakar 142 Dec 09, 2022
A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

idn-solver Paper | Project Page This repository contains the code release of our ICCV 2021 paper: A Confidence-based Iterative Solver of Depths and Su

zhaowang 43 Nov 17, 2022