Code release for Local Light Field Fusion at SIGGRAPH 2019

Overview





Local Light Field Fusion

Project | Video | Paper

Tensorflow implementation for novel view synthesis from sparse input images.

Local Light Field Fusion: Practical View Synthesis with Prescriptive Sampling Guidelines
Ben Mildenhall*1, Pratul Srinivasan*1, Rodrigo Ortiz-Cayon2, Nima Khademi Kalantari3, Ravi Ramamoorthi4, Ren Ng1, Abhishek Kar2
1UC Berkeley, 2Fyusion Inc, 3Texas A&M, 4UC San Diego
*denotes equal contribution
In SIGGRAPH 2019

Table of Contents

Installation TL;DR: Setup and render a demo scene

First install docker (instructions) and nvidia-docker (instructions).

Run this in the base directory to download a pretrained checkpoint, download a Docker image, and run code to generate MPIs and a rendered output video on an example input dataset:

bash download_data.sh
sudo docker pull bmild/tf_colmap
sudo docker tag bmild/tf_colmap tf_colmap
sudo nvidia-docker run --rm --volume /:/host --workdir /host$PWD tf_colmap bash demo.sh

A video like this should be output to data/testscene/outputs/test_vid.mp4:

If this works, then you are ready to start processing your own images! Run

sudo nvidia-docker run -it --rm --volume /:/host --workdir /host$PWD tf_colmap

to enter a shell inside the Docker container, and skip ahead to the section on using your own input images for view synthesis.

Full Installation Details

You can either install the prerequisites by hand or use our provided Dockerfile to make a docker image.

In either case, start by downloading this repository, then running the download_data.sh script to download a pretrained model and example input dataset:

bash download_data.sh

After installing dependencies, try running bash demo.sh from the base directory. (If using Docker, run this inside the container.) This should generate the video shown in the Installation TL;DR section at data/testscene/outputs/test_vid.mp4.

Manual installation

  • Install CUDA, Tensorflow, COLMAP, ffmpeg
  • Install the required Python packages:
pip install -r requirements.txt
  • Optional: run make in cuda_renderer/ directory.
  • Optional: run make in opengl_viewer/ directory. You may need to install GLFW or some other OpenGL libraries. For GLFW:
sudo apt-get install libglfw3-dev

Docker installation

To build the docker image on your own machine, which may take 15-30 mins:

sudo docker build -t tf_colmap:latest .

To download the image (~6GB) instead:

sudo docker pull bmild/tf_colmap
sudo docker tag bmild/tf_colmap tf_colmap

Afterwards, you can launch an interactive shell inside the container:

sudo nvidia-docker run -it --rm --volume /:/host --workdir /host$PWD tf_colmap

From this shell, all the code in the repo should work (except opengl_viewer).

To run any single command <command...> inside the docker container:

sudo nvidia-docker run --rm --volume /:/host --workdir /host$PWD tf_colmap <command...>

Using your own input images for view synthesis

Our method takes in a set of images of a static scene, promotes each image to a local layered representation (MPI), and blends local light fields rendered from these MPIs to render novel views. Please see our paper for more details.

As a rule of thumb, you should use images where the maximum disparity between views is no more than about 64 pixels (watch the closest thing to the camera and don't let it move more than ~1/8 the horizontal field of view between images). Our datasets usually consist of 20-30 images captured handheld in a rough grid pattern.

Quickstart: rendering a video from a zip file of your images

You can quickly render novel view frames and a .mp4 video from a zip file of your captured input images with the zip2mpis.sh bash script.

bash zip2mpis.sh <zipfile> <your_outdir> [--height HEIGHT]

height is the output height in pixels. We recommend using a height of 360 pixels for generating results quickly.

General step-by-step usage

Begin by creating a base scene directory (e.g., scenedir/), and copying your images into a subdirectory called images/ (e.g., scenedir/images).

1. Recover camera poses

This script calls COLMAP to run structure from motion to get 6-DoF camera poses and near/far depth bounds for the scene.

python imgs2poses.py <your_scenedir>

2. Generate MPIs

This script uses our pretrained Tensorflow graph (make sure it exists in checkpoints/papermodel) to generate MPIs from the posed images. They will be saved in <your_mpidir>, a directory will be created by the script.

python imgs2mpis.py <your_scenedir> <your_mpidir> \
    [--checkpoint CHECKPOINT] \
    [--factor FACTOR] [--width WIDTH] [--height HEIGHT] [--numplanes NUMPLANES] \
    [--disps] [--psvs] 

You should set at most one of factor, width, or height to determine the output MPI resolution (factor will scale the input image size down an integer factor, eg. 2, 4, 8, and height/width directly scale the input images to have the specified height or width). numplanes is 32 by default. checkpoint is set to the downloaded checkpoint by default.

Example usage:

python imgs2mpis.py scenedir scenedir/mpis --height 360

3. Render novel views

You can either generate a list of novel view camera poses and render out a video, or you can load the saved MPIs in our interactive OpenGL viewer.

Generate poses for new view path

First, generate a smooth new view path by calling

python imgs2renderpath.py <your_scenedir> <your_posefile> \
	[--x_axis] [--y_axis] [--z_axis] [--circle][--spiral]

<your_posefile> is the path of an output .txt file that will be created by the script, and will contain camera poses for the rendered novel views. The five optional arguments specify the trajectory of the camera. The xyz-axis options are straight lines along each camera axis respectively, "circle" is a circle in the camera plane, and "spiral" is a circle combined with movement along the z-axis.

Example usage:

python imgs2renderpath.py scenedir scenedir/spiral_path.txt --spiral

See llff/math/pose_math.py for the code that generates these path trajectories.

Render video with CUDA

You can build this in the cuda_renderer/ directory by calling make.

Uses CUDA to render out a video. Specify the height of the output video in pixels (-1 for same resolution as the MPIs), the factor for cropping the edges of the video (default is 1.0 for no cropping), and the compression quality (crf) for the saved MP4 file (default is 18, lossless is 0, reasonable is 12-28).

./cuda_renderer mpidir <your_posefile> <your_videofile> height crop crf

<your_videofile> is the path to the video file that will be written by FFMPEG.

Example usage:

./cuda_renderer scenedir/mpis scenedir/spiral_path.txt scenedir/spiral_render.mp4 -1 0.8 18

Render video with Tensorflow

Use Tensorflow to render out a video (~100x slower than CUDA renderer). Optionally, specify how many MPIs are blended for each rendered output (default is 5) and what factor to crop the edges of the video (default is 1.0 for no cropping).

python mpis2video.py <your_mpidir> <your_posefile> videofile [--use_N USE_N] [--crop_factor CROP_FACTOR]

Example usage:

python mpis2video.py scenedir/mpis scenedir/spiral_path.txt scenedir/spiral_render.mp4 --crop_factor 0.8

Interactive OpenGL viewer

Controls:

  • ESC to quit
  • Move mouse to translate in camera plane
  • Click and drag to rotate camera
  • Scroll to change focal length (zoom)
  • 'L' to animate circle render path

The OpenGL viewer cannot be used in the Docker container.

You need OpenGL installed, particularly GLFW:

sudo apt-get install libglfw3-dev

You can build the viewer in the opengl_viewer/ directory by calling make.

General usage (in opengl_viewer/ directory) is

./opengl_viewer mpidir

Using your own poses without running COLMAP

Here we explain the poses_bounds.npy file format. This file stores a numpy array of size Nx17 (where N is the number of input images). You can see how it is loaded in the three lines here. Each row of length 17 gets reshaped into a 3x5 pose matrix and 2 depth values that bound the closest and farthest scene content from that point of view.

The pose matrix is a 3x4 camera-to-world affine transform concatenated with a 3x1 column [image height, image width, focal length] to represent the intrinsics (we assume the principal point is centered and that the focal length is the same for both x and y).

The right-handed coordinate system of the the rotation (first 3x3 block in the camera-to-world transform) is as follows: from the point of view of the camera, the three axes are [down, right, backwards] which some people might consider to be [-y,x,z], where the camera is looking along -z. (The more conventional frame [x,y,z] is [right, up, backwards]. The COLMAP frame is [right, down, forwards] or [x,-y,-z].)

If you have a set of 3x4 cam-to-world poses for your images plus focal lengths and close/far depth bounds, the steps to recreate poses_bounds.npy are:

  1. Make sure your poses are in camera-to-world format, not world-to-camera.
  2. Make sure your rotation matrices have the columns in the correct coordinate frame [down, right, backwards].
  3. Concatenate each pose with the [height, width, focal] intrinsics vector to get a 3x5 matrix.
  4. Flatten each of those into 15 elements and concatenate the close and far depths.
  5. Stack the 17-d vectors to get a Nx17 matrix and use np.save to store it as poses_bounds.npy in the scene's base directory (same level containing the images/ directory).

This should explain the pose processing after COLMAP.

Troubleshooting

  • PyramidCU::GenerateFeatureList: an illegal memory access was encountered: Some machine configurations might run into problems running the script imgs2poses.py. A solution to that would be to set the environment variable CUDA_VISIBLE_DEVICES. If the issue persists, try uncommenting this line to stop COLMAP from using the GPU to extract image features.
  • Black screen: In the latest versions of MacOS, OpenGL initializes a context with a black screen until the window is dragged or resized. If you run into this problem, please drag the window to another position.
  • COLMAP fails: If you see "Could not register, trying another image", you will probably have to try changing COLMAP optimization parameters or capturing more images of your scene. See here.

Citation

If you find this useful for your research, please cite the following paper.

@article{mildenhall2019llff,
  title={Local Light Field Fusion: Practical View Synthesis with Prescriptive Sampling Guidelines},
  author={Ben Mildenhall and Pratul P. Srinivasan and Rodrigo Ortiz-Cayon and Nima Khademi Kalantari and Ravi Ramamoorthi and Ren Ng and Abhishek Kar},
  journal={ACM Transactions on Graphics (TOG)},
  year={2019},
}
PySLM Python Library for Selective Laser Melting and Additive Manufacturing

PySLM Python Library for Selective Laser Melting and Additive Manufacturing PySLM is a Python library for supporting development of input files used i

Dr Luke Parry 35 Dec 27, 2022
MEDS: Enhancing Memory Error Detection for Large-Scale Applications

MEDS: Enhancing Memory Error Detection for Large-Scale Applications Prerequisites cmake and clang Build MEDS supporting compiler $ make Build Using Do

Secomp Lab at Purdue University 34 Dec 14, 2022
Extract MNIST handwritten digits dataset binary file into bmp images

MNIST-dataset-extractor Extract MNIST handwritten digits dataset binary file into bmp images More info at http://yann.lecun.com/exdb/mnist/ Dependenci

Omar Mostafa 6 May 24, 2021
Dilated Convolution with Learnable Spacings PyTorch

Dilated-Convolution-with-Learnable-Spacings-PyTorch Ismail Khalfaoui Hassani Dilated Convolution with Learnable Spacings (abbreviated to DCLS) is a no

15 Dec 09, 2022
Code repository for "Free View Synthesis", ECCV 2020.

Free View Synthesis Code repository for "Free View Synthesis", ECCV 2020. Setup Install the following Python packages in your Python environment - num

Intelligent Systems Lab Org 253 Dec 07, 2022
QilingLab challenge writeup

qiling lab writeup shielder 在 2021/7/21 發布了 QilingLab 來幫助學習 qiling framwork 的用法,剛好最近有用到,順手解了一下並寫了一下 writeup。 前情提要 Qiling 是一款功能強大的模擬框架,和 qemu user mode

Yuan 17 Nov 17, 2022
Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant.

Marvis v1.0 Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant. About M.A.R.V.I.S. J.A.R.V.I.S. is a fictional character

Reda Mastouri 1 Dec 29, 2021
Repo público onde postarei meus estudos de Python, buscando aprender por meio do compartilhamento do aprendizado!

Seja bem vindo à minha repo de Estudos em Python 3! Este é um repositório criado por um programador amador que estuda tópicos de finanças, estatística

32 Dec 24, 2022
face_recognization (FaceNet) + TFHE (HNP) + hand_face_detection (Mediapipe)

SuperControlSystem Face_Recognization (FaceNet) 面部识别 (FaceNet) Fully Homomorphic Encryption over the Torus (HNP) 环面全同态加密 (TFHE) Hand_Face_Detection (M

liziyu0104 2 Dec 30, 2021
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
DilatedNet in Keras for image segmentation

Keras implementation of DilatedNet for semantic segmentation A native Keras implementation of semantic segmentation according to Multi-Scale Context A

303 Mar 15, 2022
Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks

pix2vox [Demonstration video] Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks. Generated samples Single-category generation M

Takumi Moriya 232 Nov 14, 2022
Neighborhood Contrastive Learning for Novel Class Discovery

Neighborhood Contrastive Learning for Novel Class Discovery This repository contains the official implementation of our paper: Neighborhood Contrastiv

Zhun Zhong 56 Dec 09, 2022
Convolutional Neural Network for 3D meshes in PyTorch

MeshCNN in PyTorch SIGGRAPH 2019 [Paper] [Project Page] MeshCNN is a general-purpose deep neural network for 3D triangular meshes, which can be used f

Rana Hanocka 1.4k Jan 04, 2023
Deep Learning agent of Starcraft2, similar to AlphaStar of DeepMind except size of network.

Introduction This repository is for Deep Learning agent of Starcraft2. It is very similar to AlphaStar of DeepMind except size of network. I only test

Dohyeong Kim 136 Jan 04, 2023
This repository contains the code for our fast polygonal building extraction from overhead images pipeline.

Polygonal Building Segmentation by Frame Field Learning We add a frame field output to an image segmentation neural network to improve segmentation qu

Nicolas Girard 186 Jan 04, 2023
Automatic Image Background Subtraction

Automatic Image Background Subtraction This repo contains set of scripts for automatic one-shot image background subtraction task using the following

Oleg Sémery 6 Dec 05, 2022
Recognize Handwritten Digits using Deep Learning on the browser itself.

MNIST on the Web An attempt to predict MNIST handwritten digits from my PyTorch model from the browser (client-side) and not from the server, with the

Harjyot Bagga 7 May 28, 2022
Social Network Ads Prediction

Social network advertising, also social media targeting, is a group of terms that are used to describe forms of online advertising that focus on social networking services.

Khazar 2 Jan 28, 2022
Official implementation of paper Gradient Matching for Domain Generalization

Gradient Matching for Domain Generalisation This is the official PyTorch implementation of Gradient Matching for Domain Generalisation. In our paper,

94 Dec 23, 2022