Code for reproducible experiments presented in KSD Aggregated Goodness-of-fit Test.

Overview

Code for KSDAgg: a KSD aggregated goodness-of-fit test

This GitHub repository contains the code for the reproducible experiments presented in our paper KSD Aggregated Goodness-of-fit Test:

  • Gamma distribution experiment,
  • Gaussian-Bernoulli Restricted Boltzmann Machine experiment,
  • MNIST Normalizing Flow experiment.

We provide the code to run the experiments to generate Figures 1-4 and Table 1 from our paper, those can be found in figures.

Our aggregated test KSDAgg is implemented in ksdagg.py. We provide code for two quantile estimation methods: the wild bootstrap and the parametric bootstrap. Our implementation uses the IMQ (inverse multiquadric) kernel with a collection of bandwidths consisting of the median bandwidth scaled by powers of 2, and with one of the four types of weights proposed in MMD Aggregated Two-Sample Test. We also provide custom KSDAgg functions in ksdagg.py which allow for the use of any kernel collections and weights.

Requirements

  • python 3.9

Installation

In a chosen directory, clone the repository and change to its directory by executing

git clone [email protected]:antoninschrab/ksdagg-paper.git
cd ksdagg-paper

We then recommend creating and activating a virtual environment by either

  • using venv:
    python3 -m venv ksdagg-env
    source ksdagg-env/bin/activate
    # can be deactivated by running:
    # deactivate
    
  • or using conda:
    conda create --name ksdagg-env python=3.9
    conda activate ksdagg-env
    # can be deactivated by running:
    # conda deactivate
    

The required packages can then be installed in the virtual environment by running

python -m pip install -r requirements.txt

Generating or downloading the data

The data for the Gaussian-Bernoulli Restricted Boltzmann Machine experiment and for the MNIST Normalizing Flow experiment can

  • be obtained by executing
    python generate_data_rbm.py
    python generate_data_nf.py
    
  • or, as running the above scripts can be computationally expensive, we also provide the option to download their outputs directly
    python download_data.py
    

Those scripts generate samples and compute their associated scores under the model for the different settings considered in our experiments, the data is saved in the new directory data.

Reproducing the experiments of the paper

First, for our three experiments, we compute KSD values to be used for the parametric bootstrap and save them in the directory parametric. This can be done by running

python generate_parametric.py

For convenience, we directly provide the directory parametric obtained by running this script.

To run the three experiments, the following commands can be executed

python experiment_gamma.py 
python experiment_rbm.py 
python experiment_nf.py 

Those commands run all the tests necessary for our experiments, the results are saved in dedicated .csv and .pkl files in the directory results (which is already provided for ease of use). Note that our expeiments are comprised of 'embarrassingly parallel for loops', for which significant speed up can be obtained by using parallel computing libraries such as joblib or dask.

The actual figures of the paper can be obtained from the saved dataframes in results by using the command

python figures.py  

The figures are saved in the directory figures and correspond to the ones used in our paper.

References

Our KSDAgg code is based our MMDAgg implementation which can be found at https://github.com/antoninschrab/mmdagg-paper.

For the Gaussian-Bernoulli Restricted Boltzmann Machine experiment, we obtain the samples and scores in generate_data_rbm.py by relying on Wittawat Jitkrittum's implementation which can be found at https://github.com/wittawatj/kernel-gof under the MIT License. The relevant files we use are in the directory kgof.

For the MNIST Normalizing Flow experiment, we use in generate_data_nf.py a multiscale Normalizing Flow trained on the MNIST dataset as implemented by Phillip Lippe in Tutorial 11: Normalizing Flows for image modeling as part of the UvA Deep Learning Tutorials under the MIT License.

Author

Antonin Schrab

Centre for Artificial Intelligence, Department of Computer Science, University College London

Gatsby Computational Neuroscience Unit, University College London

Inria, Lille - Nord Europe research centre and Inria London Programme

Bibtex

@unpublished{schrab2022ksd,
    title={{KSD} Aggregated Goodness-of-fit Test},
    author={Antonin Schrab and Benjamin Guedj and Arthur Gretton},
    year={2022},
    note = "Submitted.",
    abstract = {We investigate properties of goodness-of-fit tests based on the Kernel Stein Discrepancy (KSD). We introduce a strategy to construct a test, called KSDAgg, which aggregates multiple tests with different kernels. KSDAgg avoids splitting the data to perform kernel selection (which leads to a loss in test power), and rather maximises the test power over a collection of kernels. We provide theoretical guarantees on the power of KSDAgg: we show it achieves the smallest uniform separation rate of the collection, up to a logarithmic term. KSDAgg can be computed exactly in practice as it relies either on a parametric bootstrap or on a wild bootstrap to estimate the quantiles and the level corrections. In particular, for the crucial choice of bandwidth of a fixed kernel, it avoids resorting to arbitrary heuristics (such as median or standard deviation) or to data splitting. We find on both synthetic and real-world data that KSDAgg outperforms other state-of-the-art adaptive KSD-based goodness-of-fit testing procedures.},
    url = {https://arxiv.org/abs/2202.00824},
    url_PDF = {https://arxiv.org/pdf/2202.00824.pdf},
    url_Code = {https://github.com/antoninschrab/ksdagg-paper},
    eprint={2202.00824},
    archivePrefix={arXiv},
    primaryClass={stat.ML}
}

License

MIT License (see LICENSE.md)

Owner
Antonin Schrab
Antonin Schrab
Code for: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification Prerequisite PyTorch = 1.2.0 Python3 torch

16 Dec 14, 2022
Hunt down social media accounts by username across social networks

Hunt down social media accounts by username across social networks Installation | Usage | Docker Notes | Contributing Installation # clone the repo $

1 Dec 14, 2021
The codes reproduce the figures and statistics in the paper, "Controlling for multiple covariates," by Mark Tygert.

The accompanying codes reproduce all figures and statistics presented in "Controlling for multiple covariates" by Mark Tygert. This repository also pr

Meta Research 1 Dec 02, 2021
Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized C

Sam Bond-Taylor 139 Jan 04, 2023
Pipeline code for Sequential-GAM(Genome Architecture Mapping).

Sequential-GAM Pipeline code for Sequential-GAM(Genome Architecture Mapping). mapping whole_preprocess.sh include the whole processing of mapping. usa

3 Nov 03, 2022
A set of tools for creating and testing machine learning features, with a scikit-learn compatible API

Feature Forge This library provides a set of tools that can be useful in many machine learning applications (classification, clustering, regression, e

Machinalis 380 Nov 05, 2022
MQBench: Towards Reproducible and Deployable Model Quantization Benchmark

MQBench: Towards Reproducible and Deployable Model Quantization Benchmark We propose a benchmark to evaluate different quantization algorithms on vari

494 Dec 29, 2022
A curated list of the latest breakthroughs in AI (in 2021) by release date with a clear video explanation, link to a more in-depth article, and code.

2021: A Year Full of Amazing AI papers- A Review 📌 A curated list of the latest breakthroughs in AI by release date with a clear video explanation, l

Louis-François Bouchard 2.9k Dec 31, 2022
🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗

🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗 This year's first semester Club Info challenge will put you at the head of a car racing

ClubINFO INGI (UCLouvain) 6 Dec 10, 2021
Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation

Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation Overview This example will show how to validate the status of our firewall before and a

Calvin Remsburg 1 Jan 07, 2022
🌳 A Python-inspired implementation of the Optimum-Path Forest classifier.

OPFython: A Python-Inspired Optimum-Path Forest Classifier Welcome to OPFython. Note that this implementation relies purely on the standard LibOPF. Th

Gustavo Rosa 30 Jan 04, 2023
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Ubisoft 76 Dec 30, 2022
True Few-Shot Learning with Language Models

This codebase supports using language models (LMs) for true few-shot learning: learning to perform a task using a limited number of examples from a single task distribution.

Ethan Perez 124 Jan 04, 2023
Mahadi-Now - This Is Pakistani Just Now Login Tools

PAKISTANI JUST NOW LOGIN TOOLS Install apt update apt upgrade apt install python

MAHADI HASAN AFRIDI 19 Apr 06, 2022
ArtEmis: Affective Language for Art

ArtEmis: Affective Language for Art Created by Panos Achlioptas, Maks Ovsjanikov, Kilichbek Haydarov, Mohamed Elhoseiny, Leonidas J. Guibas Introducti

Panos 268 Dec 12, 2022
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambig

王皓波 147 Jan 07, 2023
PyTorch implementation of the paper Deep Networks from the Principle of Rate Reduction

Deep Networks from the Principle of Rate Reduction This repository is the official PyTorch implementation of the paper Deep Networks from the Principl

459 Dec 27, 2022
This repo is to present various code demos on how to use our Graph4NLP library.

Deep Learning on Graphs for Natural Language Processing Demo The repository contains code examples for DLG4NLP tutorials at NAACL 2021, SIGIR 2021, KD

Graph4AI 143 Dec 23, 2022
Rule Based Classification Project

Kural Tabanlı Sınıflandırma ile Potansiyel Müşteri Getirisi Hesaplama İş Problemi: Bir oyun şirketi müşterilerinin bazı özelliklerini kullanaraknseviy

Şafak 1 Jan 12, 2022
Generic image compressor for machine learning. Pytorch code for our paper "Lossy compression for lossless prediction".

Lossy Compression for Lossless Prediction Using: Training: This repostiory contains our implementation of the paper: Lossy Compression for Lossless Pr

Yann Dubois 84 Jan 02, 2023