yolox_backbone is a deep-learning library and is a collection of YOLOX Backbone models.

Overview

YOLOX-Backbone

yolox-backbone is a deep-learning library and is a collection of YOLOX backbone models.

Install

pip install yolox-backbone

Load a Pretrained Model

Pretrained models can be loaded using yolox_backbone.create_model.

import yolox_backbone

m = yolox_backbone.create_model('yolox-s', pretrained=True)
m.eval()

List Supported Models

import yolox_backbone
from pprint import pprint

model_names = yolox_backbone.list_models()
pprint(model_names)

>>> ['yolox-s',
 'yolox-m',
 'yolox-l',
 'yolox-x',
 'yolox-nano',
 'yolox-tiny',
 'yolox-darknet53']

Select specific feature levels

There is one creation argument impacting the output features.

  • out_features selects which FPN features to output

Example

import yolox_backbone
import torch
from pprint import pprint

pprint(yolox_backbone.list_models())

model_names = yolox_backbone.list_models()
for model_name in model_names:
    print("model_name: ", model_name)
    model = yolox_backbone.create_model(model_name=model_name, 
                                        pretrained=True, 
                                        out_features=["P3", "P4", "P5"]
                                        )

    input_tensor = torch.randn((1, 3, 640, 640))
    fpn_output_tensors = model(input_tensor)

    p3 = fpn_output_tensors["P3"]
    p4 = fpn_output_tensors["P4"]
    p5 = fpn_output_tensors["P5"]
    
    print("input_tensor.shape: ", input_tensor.shape)
    print("p3.shape: ", p3.shape)
    print("p4.shape: ", p4.shape)
    print("p5.shape: ", p5.shape)
    print("-" * 50)
    

Output:

['yolox-s', 'yolox-m', 'yolox-l', 'yolox-x', 'yolox-nano', 'yolox-tiny', 'yolox-darknet53']
model_name:  yolox-s
input_tensor.shape:  torch.Size([1, 3, 640, 640])
p3.shape:  torch.Size([1, 128, 80, 80])
p4.shape:  torch.Size([1, 256, 40, 40])
p5.shape:  torch.Size([1, 512, 20, 20])
--------------------------------------------------
model_name:  yolox-m
input_tensor.shape:  torch.Size([1, 3, 640, 640])
p3.shape:  torch.Size([1, 192, 80, 80])
p4.shape:  torch.Size([1, 384, 40, 40])
p5.shape:  torch.Size([1, 768, 20, 20])
--------------------------------------------------
model_name:  yolox-l
input_tensor.shape:  torch.Size([1, 3, 640, 640])
p3.shape:  torch.Size([1, 256, 80, 80])
p4.shape:  torch.Size([1, 512, 40, 40])
p5.shape:  torch.Size([1, 1024, 20, 20])
--------------------------------------------------
model_name:  yolox-x
input_tensor.shape:  torch.Size([1, 3, 640, 640])
p3.shape:  torch.Size([1, 320, 80, 80])
p4.shape:  torch.Size([1, 640, 40, 40])
p5.shape:  torch.Size([1, 1280, 20, 20])
--------------------------------------------------
model_name:  yolox-nano
input_tensor.shape:  torch.Size([1, 3, 640, 640])
p3.shape:  torch.Size([1, 64, 80, 80])
p4.shape:  torch.Size([1, 128, 40, 40])
p5.shape:  torch.Size([1, 256, 20, 20])
--------------------------------------------------
model_name:  yolox-tiny
input_tensor.shape:  torch.Size([1, 3, 640, 640])
p3.shape:  torch.Size([1, 96, 80, 80])
p4.shape:  torch.Size([1, 192, 40, 40])
p5.shape:  torch.Size([1, 384, 20, 20])
--------------------------------------------------
model_name:  yolox-darknet53
input_tensor.shape:  torch.Size([1, 3, 640, 640])
p3.shape:  torch.Size([1, 128, 80, 80])
p4.shape:  torch.Size([1, 256, 40, 40])
p5.shape:  torch.Size([1, 512, 20, 20])
--------------------------------------------------
Owner
Yonghye Kwon
practical
Yonghye Kwon
Code for the paper "On the Power of Edge Independent Graph Models"

Edge Independent Graph Models Code for the paper: "On the Power of Edge Independent Graph Models" Sudhanshu Chanpuriya, Cameron Musco, Konstantinos So

Konstantinos Sotiropoulos 0 Oct 26, 2021
Face Recognize System on camera AI OAK1

FRS on OAK1 Face Recognize System on camera OAK1 This project contains our work that deploy on camera OAK1 Features Anti-Spoofing Face detection Face

Tran Anh Tuan 6 Aug 08, 2022
Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection.

WOOD Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection. Abstract The training and test data for deep-neural-ne

8 Dec 24, 2022
A Keras implementation of YOLOv4 (Tensorflow backend)

keras-yolo4 请使用更完善的版本: https://github.com/miemie2013/Keras-YOLOv4 Please visit here for more complete model: https://github.com/miemie2013/Keras-YOLOv

384 Nov 29, 2022
Weighted K Nearest Neighbors (kNN) algorithm implemented on python from scratch.

kNN_From_Scratch I implemented the k nearest neighbors (kNN) classification algorithm on python. This algorithm is used to predict the classes of new

1 Dec 14, 2021
Deep Ensemble Learning with Jet-Like architecture

Ransomware analysis using DEL with jet-like architecture comprising two CNN wings, a sparse AE tail, a non-linear PCA to produce a diverse feature space, and an MLP nose

Ahsen Nazir 2 Feb 06, 2022
Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment.

MT Schmitz 2 Feb 11, 2022
Implementation of FSGNN

FSGNN Implementation of FSGNN. For more details, please refer to our paper Experiments were conducted with following setup: Pytorch: 1.6.0 Python: 3.8

19 Dec 05, 2022
Adabelief-Optimizer - Repository for NeurIPS 2020 Spotlight "AdaBelief Optimizer: Adapting stepsizes by the belief in observed gradients"

AdaBelief Optimizer NeurIPS 2020 Spotlight, trains fast as Adam, generalizes well as SGD, and is stable to train GANs. Release of package We have rele

Juntang Zhuang 998 Dec 29, 2022
Contains code for Deep Kernelized Dense Geometric Matching

DKM - Deep Kernelized Dense Geometric Matching Contains code for Deep Kernelized Dense Geometric Matching We provide pretrained models and code for ev

Johan Edstedt 83 Dec 23, 2022
Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022)

Pop-Out Motion Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022) Jihyun Lee*, Minhyuk Sung*, Hyunjin Kim, Tae-Ky

Jihyun Lee 88 Nov 22, 2022
YOLOV4运行在嵌入式设备上

在嵌入式设备上实现YOLO V4 tiny 在嵌入式设备上实现YOLO V4 tiny 目录结构 目录结构 |-- YOLO V4 tiny |-- .gitignore |-- LICENSE |-- README.md |-- test.txt |-- t

Liu-Wei 6 Sep 09, 2021
Exploration & Research into cross-domain MEV. Initial focus on ETH/POLYGON.

xMEV, an apt exploration This is a small exploration on the xMEV opportunities between Polygon and Ethereum. It's a data analysis exercise on a few pa

odyslam.eth 7 Oct 18, 2022
mmdetection version of TinyBenchmark.

introduction This project is an mmdetection version of TinyBenchmark. TODO list: add TinyPerson dataset and evaluation add crop and merge for image du

34 Aug 27, 2022
Hyperbolic Image Segmentation, CVPR 2022

Hyperbolic Image Segmentation, CVPR 2022 This is the implementation of paper Hyperbolic Image Segmentation (CVPR 2022). Repository structure assets :

Mina Ghadimi Atigh 46 Dec 29, 2022
Catbird is an open source paraphrase generation toolkit based on PyTorch.

Catbird is an open source paraphrase generation toolkit based on PyTorch. Quick Start Requirements and Installation The project is based on PyTorch 1.

Afonso Salgado de Sousa 5 Dec 15, 2022
AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models

AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models Description

Angel de Paula 0 Jun 08, 2022
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can

Martin Valchev 3 Apr 24, 2022
This repository contains implementations and illustrative code to accompany DeepMind publications

DeepMind Research This repository contains implementations and illustrative code to accompany DeepMind publications. Along with publishing papers to a

DeepMind 11.3k Dec 31, 2022
pyspark🍒🥭 is delicious,just eat it!😋😋

如何用10天吃掉pyspark? 🔥 🔥 《10天吃掉那只pyspark》 🚀

lyhue1991 578 Dec 30, 2022