An implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019).

Overview

MixHop and N-GCN

PWC Arxiv codebeat badge repo sizebenedekrozemberczki

A PyTorch implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019) and "A Higher-Order Graph Convolutional Layer" (NeurIPS 2018).


Abstract

Recent methods generalize convolutional layers from Euclidean domains to graph-structured data by approximating the eigenbasis of the graph Laplacian. The computationally-efficient and broadly-used Graph ConvNet of Kipf & Welling, over-simplifies the approximation, effectively rendering graph convolution as a neighborhood-averaging operator. This simplification restricts the model from learning delta operators, the very premise of the graph Laplacian. In this work, we propose a new Graph Convolutional layer which mixes multiple powers of the adjacency matrix, allowing it to learn delta operators. Our layer exhibits the same memory footprint and computational complexity as a GCN. We illustrate the strength of our proposed layer on both synthetic graph datasets, and on several real-world citation graphs, setting the record state-of-the-art on Pubmed.

This repository provides a PyTorch implementation of MixHop and N-GCN as described in the papers:

MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Hrayr Harutyunyan, Nazanin Alipourfard, Kristina Lerman, Greg Ver Steeg, and Aram Galstyan. ICML, 2019. [Paper]

A Higher-Order Graph Convolutional Layer. Sami A Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Hrayr Harutyunyan. NeurIPS, 2018. [Paper]

The original TensorFlow implementation of MixHop is available [Here].

Requirements

The codebase is implemented in Python 3.5.2. package versions used for development are just below.

networkx          2.4
tqdm              4.28.1
numpy             1.15.4
pandas            0.23.4
texttable         1.5.0
scipy             1.1.0
argparse          1.1.0
torch             1.1.0
torch-sparse      0.3.0

Datasets

The code takes the **edge list** of the graph in a csv file. Every row indicates an edge between two nodes separated by a comma. The first row is a header. Nodes should be indexed starting with 0. A sample graph for `Cora` is included in the `input/` directory. In addition to the edgelist there is a JSON file with the sparse features and a csv with the target variable.

The **feature matrix** is a sparse binary one it is stored as a json. Nodes are keys of the json and feature indices are the values. For each node feature column ids are stored as elements of a list. The feature matrix is structured as:

{ 0: [0, 1, 38, 1968, 2000, 52727],
  1: [10000, 20, 3],
  2: [],
  ...
  n: [2018, 10000]}

The **target vector** is a csv with two columns and headers, the first contains the node identifiers the second the targets. This csv is sorted by node identifiers and the target column contains the class meberships indexed from zero.

NODE ID Target
0 3
1 1
2 0
3 1
... ...
n 3

Options

Training an N-GCN/MixHop model is handled by the `src/main.py` script which provides the following command line arguments.

Input and output options

  --edge-path       STR    Edge list csv.         Default is `input/cora_edges.csv`.
  --features-path   STR    Features json.         Default is `input/cora_features.json`.
  --target-path     STR    Target classes csv.    Default is `input/cora_target.csv`.

Model options

  --model             STR     Model variant.                 Default is `mixhop`.               
  --seed              INT     Random seed.                   Default is 42.
  --epochs            INT     Number of training epochs.     Default is 2000.
  --early-stopping    INT     Early stopping rounds.         Default is 10.
  --training-size     INT     Training set size.             Default is 1500.
  --validation-size   INT     Validation set size.           Default is 500.
  --learning-rate     FLOAT   Adam learning rate.            Default is 0.01.
  --dropout           FLOAT   Dropout rate value.            Default is 0.5.
  --lambd             FLOAT   Regularization coefficient.    Default is 0.0005.
  --layers-1          LST     Layer sizes (upstream).        Default is [200, 200, 200]. 
  --layers-2          LST     Layer sizes (bottom).          Default is [200, 200, 200].
  --cut-off           FLOAT   Norm cut-off for pruning.      Default is 0.1.
  --budget            INT     Architecture neuron budget.    Default is 60.

Examples

The following commands learn a neural network and score on the test set. Training a model on the default dataset.

$ python src/main.py

Training a MixHop model for a 100 epochs.

$ python src/main.py --epochs 100

Increasing the learning rate and the dropout.

$ python src/main.py --learning-rate 0.1 --dropout 0.9

Training a model with diffusion order 2:

$ python src/main.py --layers 64 64

Training an N-GCN model:

$ python src/main.py --model ngcn

License


Comments
  • FileNotFoundError: [Errno 2] No such file or directory: './input/cora_edges.csv'

    FileNotFoundError: [Errno 2] No such file or directory: './input/cora_edges.csv'

    hello, when i run src/main.py,the error message appears: File "pandas_libs\parsers.pyx", line 361, in pandas._libs.parsers.TextReader.cinit File "pandas_libs\parsers.pyx", line 653, in pandas._libs.parsers.TextReader._setup_parser_source FileNotFoundError: [Errno 2] No such file or directory: './input/cora_edges.csv'

    do you know how to solve it?

    opened by tanjia123456 4
  • Citeseer and Pubmed Datasets

    Citeseer and Pubmed Datasets

    Hi Benedek,

    Thank you so much for the code. I want to run your code on Citeseer and Pubmed datasets. Would you mind providing Citeseer and Pubmed data in this format? By the way, after running MixHop model with default parameters I got the test accuracy 0.7867. Did the accuracy depend on the system that the code is running?

    Thanks in advance

    opened by bousejin 3
  • IndexError:

    IndexError:

    hello, when I run main.py, the error message occurs:

    File "D:\anaconda3.4\lib\site-packages\torch_sparse\spmm.py", line 30, in spmm out = matrix[col] IndexError: index 10241 is out of bounds for dimension 0 with size 10241

    the content of the spmm.py: `# import torch from torch_scatter import scatter_add

    def spmm(index, value, m, n, matrix): """Matrix product of sparse matrix with dense matrix. 稀疏矩阵与稠密矩阵的矩阵乘积

    Args:
        index (:class:`LongTensor`): The index tensor of sparse matrix.
        value (:class:`Tensor`): The value tensor of sparse matrix.
        m (int): The first dimension of corresponding dense matrix.
        n (int): The second dimension of corresponding dense matrix.
        matrix (:class:`Tensor`): The dense matrix.
      :rtype: :class:`Tensor`
    """
    
    assert n == matrix.size(0)
    
    row, col = index
    
    matrix = matrix if matrix.dim() > 1 else matrix.unsqueeze(-1)
    
    out = matrix[col]
    out = out * value.unsqueeze(-1)
    out = scatter_add(out, row, dim=0, dim_size=m)
    
    return out
    

    ` by the way, I use my own datasets, and the number of node is 10242. do you know how to solve it?

    opened by tanjia123456 2
  • some problem about codes

    some problem about codes

    When I run the code, some error occured as follows: MixHop-and-N-GCN-master\src\utils.py", line 45, in feature_reader out_features["indices"] = torch.LongTensor(np.concatenate([features.row.reshape(-1,1), features.col.reshape(-1,1)],axis=1).T) TypeError: can't convert np.ndarray of type numpy.int32. The only supported types are: float64, float32, float16, int64, int32, int16, int8, and uint8. I search it on the Internet and found that it seems to be a list of lists that are not of the same length. I was stuck in it and do not know how to correct it! Looking forward to your help!!Thanks!!

    opened by junkangwu 2
  • About

    About "torch_scatter"

    I cannot successfully install "torch_scatter". When I run the command line : pip3 install torch_scatter, an error always occurs, just like below. I tried to solve the problem, but I don't find the correct method. Could you help me? Thanks a lot!

    The error: ... cpu/scatter.cpp:1:29: fatal error: torch/extension.h: No such file or directory compilation terminated. error: command 'x86_64-linux-gnu-gcc' failed with exit status 1


    Failed building wheel for torch-scatter Running setup.py clean for torch-scatter Failed to build torch-scatter Installing collected packages: torch-scatter Running setup.py install for torch-scatter ... error Complete output from command /usr/bin/python3 -u -c "import setuptools, tokenize;file='/tmp/pip-build-ijd9s63n/torch-scatter/setup.py';exec(compile(getattr(tokenize, 'open', open)(file).read().replace('\r\n', '\n'), file, 'exec'))" install --record /tmp/pip-4tkx7v_s-record/install-record.txt --single-version-externally-managed --compile: running install running build running build_py creating build creating build/lib.linux-x86_64-3.5 creating build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/mul.py -> build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/mean.py -> build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/sub.py -> build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/min.py -> build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/std.py -> build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/init.py -> build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/max.py -> build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/div.py -> build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/add.py -> build/lib.linux-x86_64-3.5/torch_scatter creating build/lib.linux-x86_64-3.5/test copying test/test_multi_gpu.py -> build/lib.linux-x86_64-3.5/test copying test/utils.py -> build/lib.linux-x86_64-3.5/test copying test/test_std.py -> build/lib.linux-x86_64-3.5/test copying test/init.py -> build/lib.linux-x86_64-3.5/test copying test/test_forward.py -> build/lib.linux-x86_64-3.5/test copying test/test_backward.py -> build/lib.linux-x86_64-3.5/test creating build/lib.linux-x86_64-3.5/torch_scatter/utils copying torch_scatter/utils/ext.py -> build/lib.linux-x86_64-3.5/torch_scatter/utils copying torch_scatter/utils/init.py -> build/lib.linux-x86_64-3.5/torch_scatter/utils copying torch_scatter/utils/gen.py -> build/lib.linux-x86_64-3.5/torch_scatter/utils running build_ext building 'torch_scatter.scatter_cpu' extension creating build/temp.linux-x86_64-3.5 creating build/temp.linux-x86_64-3.5/cpu x86_64-linux-gnu-gcc -pthread -DNDEBUG -g -fwrapv -O2 -Wall -Wstrict-prototypes -g -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -fPIC -I/home/zgh/.local/lib/python3.5/site-packages/torch/lib/include -I/home/zgh/.local/lib/python3.5/site-packages/torch/lib/include/TH -I/home/zgh/.local/lib/python3.5/site-packages/torch/lib/include/THC -I/usr/include/python3.5m -c cpu/scatter.cpp -o build/temp.linux-x86_64-3.5/cpu/scatter.o -Wno-unused-variable -DTORCH_EXTENSION_NAME=scatter_cpu -D_GLIBCXX_USE_CXX11_ABI=0 -std=c++11 cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++ cpu/scatter.cpp:1:29: fatal error: torch/extension.h: No such file or directory compilation terminated. error: command 'x86_64-linux-gnu-gcc' failed with exit status 1

    ----------------------------------------
    

    Command "/usr/bin/python3 -u -c "import setuptools, tokenize;file='/tmp/pip-build-ijd9s63n/torch-scatter/setup.py';exec(compile(getattr(tokenize, 'open', open)(file).read().replace('\r\n', '\n'), file, 'exec'))" install --record /tmp/pip-4tkx7v_s-record/install-record.txt --single-version-externally-managed --compile" failed with error code 1 in /tmp/pip-build-ijd9s63n/torch-scatter/ You are using pip version 8.1.1, however version 19.1.1 is available. You should consider upgrading via the 'pip install --upgrade pip' command.

    opened by zhangguanghui1 2
  • running error

    running error

    hello, when I run main.py, the error message occurs: File "/home/tj/anaconda3/lib/python3.6/site-packages/torch_sparse/init.py", line 22, in raise OSError(e) OSError: libcusparse.so.10.0: cannot open shared object file: No such file or directory

    my python version 3.6 cuda10.0 torch1.0.1 torch-sparse0.5.1 do you know how to solve it?

    opened by tanjia123456 1
  • Higher Powers Implementation

    Higher Powers Implementation

    image

    https://github.com/benedekrozemberczki/MixHop-and-N-GCN/blob/6e4ae00055fc1aecd972081ef9c152b0e9de37c1/src/layers.py#L54-L56

    To me it looks like this is implementing H(l+1) = σ(A^j * H(l) * W(l))

    image

    Can you explain where W_j and the concatenation are taking place?

    opened by datavistics 1
  • This paper was accepted in NeuralPS 2018?

    This paper was accepted in NeuralPS 2018?

    I didn't find this paper "A Higher-Order Graph Convolutional Layer" in NeuralPS 2018 accepted list. So I am not sure whether this paper has been accepted?

    opened by Jhy1993 1
Releases(v_00001)
Owner
Benedek Rozemberczki
Machine Learning Engineer at AstraZeneca | PhD from The University of Edinburgh.
Benedek Rozemberczki
A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers.

ViTGAN: Training GANs with Vision Transformers A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers. Refer

Hong-Jia Chen 127 Dec 23, 2022
A fast implementation of bss_eval metrics for blind source separation

fast_bss_eval Do you have a zillion BSS audio files to process and it is taking days ? Is your simulation never ending ? Fear no more! fast_bss_eval i

Robin Scheibler 99 Dec 13, 2022
An open-source, low-cost, image-based weed detection device for fallow scenarios.

Welcome to the OpenWeedLocator (OWL) project, an opensource hardware and software green-on-brown weed detector that uses entirely off-the-shelf compon

Guy Coleman 145 Jan 05, 2023
Code for Efficient Visual Pretraining with Contrastive Detection

Code for DetCon This repository contains code for the ICCV 2021 paper "Efficient Visual Pretraining with Contrastive Detection" by Olivier J. Hénaff,

DeepMind 56 Nov 13, 2022
OneFlow is a performance-centered and open-source deep learning framework.

OneFlow OneFlow is a performance-centered and open-source deep learning framework. Latest News Version 0.5.0 is out! First class support for eager exe

OneFlow 4.2k Jan 07, 2023
Activity image-based video retrieval

Cross-modal-retrieval Our approach is focus on Activity Image-to-Video Retrieval (AIVR) task. The compared methods are state-of-the-art single modalit

BCMI 75 Oct 21, 2021
A chemical analysis of lipophilicities & molecule drawings including ML

A chemical analysis of lipophilicity & molecule drawings including a bit of ML analysis. This is a simple project that includes two Jupyter files (one

Aurimas A. Nausėdas 7 Nov 22, 2022
Data augmentation for NLP, accepted at EMNLP 2021 Findings

AEDA: An Easier Data Augmentation Technique for Text Classification This is the code for the EMNLP 2021 paper AEDA: An Easier Data Augmentation Techni

Akbar Karimi 81 Dec 09, 2022
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023
A TensorFlow 2.x implementation of Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders Are Scalable Vision Learners A TensorFlow implementation of Masked Autoencoders Are Scalable Vision Learners [1]. Our implementati

Aritra Roy Gosthipaty 59 Dec 10, 2022
Matching python environment code for Lux AI 2021 Kaggle competition, and a gym interface for RL models.

Lux AI 2021 python game engine and gym This is a replica of the Lux AI 2021 game ported directly over to python. It also sets up a classic Reinforceme

Geoff McDonald 74 Nov 03, 2022
End-to-end image segmentation kit based on PaddlePaddle.

English | 简体中文 PaddleSeg PaddleSeg has released the new version including the following features: Our team won the 6.2k Jan 02, 2023

Official Implementation of Domain-Aware Universal Style Transfer

Domain Aware Universal Style Transfer Official Pytorch Implementation of 'Domain Aware Universal Style Transfer' (ICCV 2021) Domain Aware Universal St

KibeomHong 80 Dec 30, 2022
[BMVC2021] "TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation"

TransFusion-Pose TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation Haoyu Ma, Liangjian Chen, Deying Kong, Zhe Wang, Xingwei

Haoyu Ma 29 Dec 23, 2022
Tool cek opsi checkpoint facebook!

tool apa ini? cek_opsi_facebook adalah sebuah tool yang mengecek opsi checkpoint akun facebook yang terkena checkpoint! tujuan dibuatnya tool ini? too

Muhammad Latif Harkat 2 Jul 17, 2022
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022
CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum

CO-PILOT CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum, NeurIPS 2021, Shuang Ao, Tianyi Zhou, Guodong Long, Qingh

Shuang Ao 1 Feb 18, 2022
The GitHub repository for the paper: “Time Series is a Special Sequence: Forecasting with Sample Convolution and Interaction“.

SCINet This is the original PyTorch implementation of the following work: Time Series is a Special Sequence: Forecasting with Sample Convolution and I

386 Jan 01, 2023
Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017

FaderNetworks PyTorch implementation of Fader Networks (NIPS 2017). Fader Networks can generate different realistic versions of images by modifying at

Facebook Research 753 Dec 23, 2022
Python implementation of a live deep learning based age/gender/expression recognizer

TUT live age estimator Python implementation of a live deep learning based age/gender/smile/celebrity twin recognizer. All components use convolutiona

Heikki Huttunen 80 Nov 21, 2022