ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing

Overview

ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing

ProFuzzBench is a benchmark for stateful fuzzing of network protocols. It includes a suite of representative open-source network servers for popular protocols (e.g., TLS, SSH, SMTP, FTP, SIP), and tools to automate experimentation.

Citing ProFuzzBench

ProFuzzBench has been accepted for publication as a Tool Demonstrations paper at the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA) 2021.

@inproceedings{profuzzbench,
  title={ProFuzzBench: A Benchmark for Stateful Protocol Fuzzing},
  author={Roberto Natella and Van-Thuan Pham},
  booktitle={Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis},
  year={2021}
}

Folder structure

protocol-fuzzing-benchmark
├── subjects: this folder contains all protocols included in this benchmark and
│   │         each protocol may have more than one target server
│   └── RTSP
│   └── FTP
│   │   └── LightFTP
│   │       └── Dockerfile: subject-specific Dockerfile
│   │       └── run.sh: (subject-specific) main script to run experiment inside a container
│   │       └── cov_script.sh: (subject-specific) script to do code coverage analysis
│   │       └── other files (e.g., patches, other subject-specific scripts)
│   └── ...
└── scripts: this folder contains all scripts to run experiments, collect & analyze results
│   └── execution
│   │   └── profuzzbench_exec_common.sh: main script to spawn containers and run experiments on them
│   │   └── ...
│   └── analysis
│       └── profuzzbench_generate_csv.sh: this script collect code coverage results from different runs
│       └── profuzzbench_plot.py: sample script for plotting
└── README.md

Tutorial - Fuzzing LightFTP server with AFLNet and AFLnwe, a network-enabled version of AFL

Follow the steps below to run and collect experimental results for LightFTP, which is a lightweight File Transfer Protocol (FTP) server. The similar steps should be followed to run experiments on other subjects. Each subject program comes with a README.md file showing subject-specific commands to run experiments.

Step-0. Set up environmental variables

git clone https://github.com/profuzzbench/profuzzbench.git
cd profuzzbench
export PFBENCH=$(pwd)
export PATH=$PATH:$PFBENCH/scripts/execution:$PFBENCH/scripts/analysis

Step-1. Build a docker image

The following commands create a docker image tagged lightftp. The image should have everything available for fuzzing and code coverage collection.

cd $PFBENCH
cd subjects/FTP/LightFTP
docker build . -t lightftp

Step-2. Run fuzzing

Run profuzzbench_exec_common.sh script to start an experiment. The script takes 8 arguments as listed below.

  • 1st argument (DOCIMAGE) : name of the docker image
  • 2nd argument (RUNS) : number of runs, one isolated Docker container is spawned for each run
  • 3rd argument (SAVETO) : path to a folder keeping the results
  • 4th argument (FUZZER) : fuzzer name (e.g., aflnet) -- this name must match the name of the fuzzer folder inside the Docker container (e.g., /home/ubuntu/aflnet)
  • 5th argument (OUTDIR) : name of the output folder created inside the docker container
  • 6th argument (OPTIONS) : all options needed for fuzzing in addition to the standard options written in the target-specific run.sh script
  • 7th argument (TIMEOUT) : time for fuzzing in seconds
  • 8th argument (SKIPCOUNT): used for calculating coverage over time. e.g., SKIPCOUNT=5 means we run gcovr after every 5 test cases because gcovr takes time and we do not want to run it after every single test case

The following commands run 4 instances of AFLNet and 4 instances of AFLnwe to simultaenously fuzz LightFTP in 60 minutes.

cd $PFBENCH
mkdir results-lightftp

profuzzbench_exec_common.sh lightftp 4 results-lightftp aflnet out-lightftp-aflnet "-P FTP -D 10000 -q 3 -s 3 -E -K -c ./ftpclean.sh" 3600 5 &
profuzzbench_exec_common.sh lightftp 4 results-lightftp aflnwe out-lightftp-aflnwe "-D 10000 -K -c ./ftpclean.sh" 3600 5

If the script runs successfully, its output should look similar to the text below.

AFLNET: Fuzzing in progress ...
AFLNET: Waiting for the following containers to stop:  f2da4b72b002 b7421386b288 cebbbc741f93 5c54104ddb86
AFLNET: Collecting results and save them to results-lightftp
AFLNET: Collecting results from container f2da4b72b002
AFLNET: Collecting results from container b7421386b288
AFLNET: Collecting results from container cebbbc741f93
AFLNET: Collecting results from container 5c54104ddb86
AFLNET: I am done!

Step-3. Collect the results

All results (in tar files) should be stored in the folder created in Step-2 (results-lightftp). Specifically, these tar files are the compressed version of output folders produced by all fuzzing instances. If the fuzzer is afl based (e.g., AFLNet, AFLnwe) each folder should contain sub-folders like crashes, hangs, queue and so on. Use profuzzbench_generate_csv.sh script to collect results in terms of code coverage over time. The script takes 5 arguments as listed below.

  • 1st argument (PROG) : name of the subject program (e.g., lightftp)
  • 2nd argument (RUNS) : number of runs
  • 3rd argument (FUZZER) : fuzzer name (e.g., aflnet)
  • 4th argument (COVFILE): CSV-formatted output file keeping the results
  • 5th argument (APPEND) : append mode; set this to 0 for the first fuzzer and 1 for the subsequent fuzzer(s).

The following commands collect the code coverage results produced by AFLNet and AFLnwe and save them to results.csv.

cd $PFBENCH/results-lightftp

profuzzbench_generate_csv.sh lightftp 4 aflnet results.csv 0
profuzzbench_generate_csv.sh lightftp 4 aflnwe results.csv 1

The results.csv file should look similar to text below. The file has six columns showing the timestamp, subject program, fuzzer name, run index, coverage type and its value. The file contains both line coverage and branch coverage over time information. Each coverage type comes with two values, in percentage (_per) and in absolute number (_abs).

time,subject,fuzzer,run,cov_type,cov
1600905795,lightftp,aflnwe,1,l_per,25.9
1600905795,lightftp,aflnwe,1,l_abs,292
1600905795,lightftp,aflnwe,1,b_per,13.3
1600905795,lightftp,aflnwe,1,b_abs,108
1600905795,lightftp,aflnwe,1,l_per,25.9
1600905795,lightftp,aflnwe,1,l_abs,292

Step-4. Analyze the results

The results collected in step 3 (i.e., results.csv) can be used for plotting. For instance, we provide a sample Python script to plot code coverage over time. Use the following command to plot the results and save it to a file.

cd $PFBENCH/results-lightftp

profuzzbench_plot.py -i results.csv -p lightftp -r 4 -c 60 -s 1 -o cov_over_time.png

This is a sample code coverage report generated by the script. Sample report

Parallel builds

To speed-up the build of Docker images, you can pass the option "-j" to make, using the MAKE_OPT environment variable and the --build-arg option of docker build. Example:

export MAKE_OPT="-j4"
docker build . -t lightftp --build-arg MAKE_OPT

FAQs

1. How do I extend ProFuzzBench?

If you want to add a new protocol and/or a new target server (of a supported protocol), please follow the above folder structure and complete the steps below. We use LightFTP as an example.

Step-1. Create a new folder containing the protocol/target server

The folder for LightFTP server is subjects/FTP/LightFTP.

Step-2. Write a Docker file for the new target server and prepare all the subject-specific scripts/files (e.g., target-specific patch, seed corpus)

The following folder structure shows all files we have prepared for fuzzing LightFTP server. Please read our paper to understand the purposes of these files.

subjects/FTP/LightFTP
├── Dockerfile (required): based on this, a target-specific Docker image is built (See Step-1 in the tutorial)
├── run.sh (required): main script to run experiment inside a container
├── cov_script.sh (required): script to do code coverage analysis
├── clean.sh (optional): script to clean server states before fuzzing to improve the stability
├── fuzzing.patch (optional): code changes needed to improve fuzzing results (e.g., remove randomness)
├── gcov.patch (required): code changes needed to support code coverage analysis (e.g., enable gcov, add a signal handler)
├── ftp.dict (optional): a dictionary containing protocol-specific tokens/keywords to support fuzzing
└── in-ftp (required): a seed corpus capturing sequences of client requests sent to the server under test.
│   │       To prepare these seeds, please follow the AFLNet tutorial at https://github.com/aflnet/aflnet.
│   │       Please use ".raw" extension for all seed inputs.
│   │
│   └── ftp_requests_full_anonymous.raw
│   └── ftp_requests_full_normal.raw
└── README.md (optional): a target-specific README containing commands to run experiments

All the required files (i.e., Dockerfile, run.sh, cov_script.sh, gcov.patch, and the seed corpus) follow some templates so that one can easily follow them to prepare files for a new target.

Step-3. Test your new target server

Once a Docker image is successfully built, you should test your commands, as written in a target-specific README.md, inside a single Docker container. For example, we run the following commands to check if everything is working for LightFTP.

//start a container
docker run -it lightftp /bin/bash

//inside the docker container
//run a 60-min fuzzing experiment using AFLNet
cd experiments
run aflnet out-lightftp-aflnet "-P FTP -D 10000 -q 3 -s 3 -E -K -c ./ftpclean.sh" 3600 5

If everything works, there should be no error messages and all the results are stored inside the out-lightftp-aflnet folder.

2. My experiment "hangs". What could be the reason(s)?

Each experiment has two parts: fuzzing and code coverage analysis. The fuzzing part should complete after the specified timeout; however, the code coverage analysis time is subject-specific and it could take several hours if the generated corpus is large or the target server is slow. You can log into the running containers to check the progress if you think your experiment hangs.

Repository for Multimodal AutoML Benchmark

Benchmarking Multimodal AutoML for Tabular Data with Text Fields Repository for the NeurIPS 2021 Dataset Track Submission "Benchmarking Multimodal Aut

Xingjian Shi 44 Nov 24, 2022
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urba

Yu Tian 115 Dec 29, 2022
This repo contains code to reproduce all experiments in Equivariant Neural Rendering

Equivariant Neural Rendering This repo contains code to reproduce all experiments in Equivariant Neural Rendering by E. Dupont, M. A. Bautista, A. Col

Apple 83 Nov 16, 2022
Official PyTorch implementation of the paper "TEMOS: Generating diverse human motions from textual descriptions"

TEMOS: TExt to MOtionS Generating diverse human motions from textual descriptions Description Official PyTorch implementation of the paper "TEMOS: Gen

Mathis Petrovich 187 Dec 27, 2022
Download & Install mods for your favorit game with a few simple clicks

Husko's SteamWorkshop Downloader 🔴 IMPORTANT ❗ 🔴 The Tool is currently being rewritten so updates will be slow and only on the dev branch until it i

Husko 67 Nov 25, 2022
Directed Greybox Fuzzing with AFL

AFLGo: Directed Greybox Fuzzing AFLGo is an extension of American Fuzzy Lop (AFL). Given a set of target locations (e.g., folder/file.c:582), AFLGo ge

380 Nov 24, 2022
PyTorch implementation of PP-LCNet: A Lightweight CPU Convolutional Neural Network

PyTorch implementation of PP-LCNet Reproduction of PP-LCNet architecture as described in PP-LCNet: A Lightweight CPU Convolutional Neural Network by C

Quan Nguyen (Fly) 47 Nov 02, 2022
RTSeg: Real-time Semantic Segmentation Comparative Study

Real-time Semantic Segmentation Comparative Study The repository contains the official TensorFlow code used in our papers: RTSEG: REAL-TIME SEMANTIC S

Mennatullah Siam 592 Nov 18, 2022
Predict the latency time of the deep learning models

Deep Neural Network Prediction Step 1. Genernate random parameters and Run them sequentially : $ python3 collect_data.py -gp -ep -pp -pl pooling -num

QAQ 1 Nov 12, 2021
Adaptive FNO transformer - official Pytorch implementation

Adaptive Fourier Neural Operators: Efficient Token Mixers for Transformers This repository contains PyTorch implementation of the Adaptive Fourier Neu

NVIDIA Research Projects 77 Dec 29, 2022
An official implementation of "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation" (CVPR 2021) in PyTorch.

BANA This is the implementation of the paper "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation". For more inf

CV Lab @ Yonsei University 59 Dec 12, 2022
This repository contains the code for the paper 'PARM: Paragraph Aggregation Retrieval Model for Dense Document-to-Document Retrieval' published at ECIR'22.

Paragraph Aggregation Retrieval Model (PARM) for Dense Document-to-Document Retrieval This repository contains the code for the paper PARM: A Paragrap

Sophia Althammer 33 Aug 26, 2022
An Extendible (General) Continual Learning Framework based on Pytorch - official codebase of Dark Experience for General Continual Learning

Mammoth - An Extendible (General) Continual Learning Framework for Pytorch NEWS STAY TUNED: We are working on an update of this repository to include

AImageLab 277 Dec 28, 2022
A small tool to joint picture including gif

README 做设计的时候遇到拼接长图的情况,但是发现没有什么好用的能拼接gif的工具。 于是自己写了个gif拼接小工具。 可以自动拼接gif、png和jpg等常见格式。 效果 从上至下 从下至上 从左至右 从右至左 使用 克隆仓库 git clone https://github.com/Dels

3 Dec 15, 2021
Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python

deepface Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid

Kushal Shingote 2 Feb 10, 2022
Learning Off-Policy with Online Planning, CoRL 2021

LOOP: Learning Off-Policy with Online Planning Accepted in Conference of Robot Learning (CoRL) 2021. Harshit Sikchi, Wenxuan Zhou, David Held Paper In

Harshit Sikchi 24 Nov 22, 2022
MolRep: A Deep Representation Learning Library for Molecular Property Prediction

MolRep: A Deep Representation Learning Library for Molecular Property Prediction Summary MolRep is a Python package for fairly measuring algorithmic p

AI-Health @NSCC-gz 83 Dec 24, 2022
Template repository to build PyTorch projects from source on any version of PyTorch/CUDA/cuDNN.

The Ultimate PyTorch Source-Build Template Translations: 한국어 TL;DR PyTorch built from source can be x4 faster than a naïve PyTorch install. This repos

Joonhyung Lee/이준형 651 Dec 12, 2022
Face Recognition Attendance Project

Face-Recognition-Attendance-Project In This Project You will learn how to mark attendance using face recognition, Hello Guys This is Gautam Kumar, Thi

Gautam Kumar 1 Dec 03, 2022