System Combination for Grammatical Error Correction Based on Integer Programming

Related tags

Deep Learninggec_ip
Overview

System Combination for Grammatical Error Correction Based on Integer Programming


This repository contains the code and scripts that implement the system combination approach for grammatical error correction in Lin and Ng (2021).

Reference

Ruixi Lin and Hwee Tou Ng (2021). System Combination for Grammatical Error Correction Based on Integer Programming.

Please cite:

@inproceedings{lin2021gecip,
  author    = "Lin, Ruixi and Ng, Hwee Tou",
  title     = "System Combination for Grammatical Error Correction Based on Integer Programming",
  booktitle = "Proceedings of Recent Advances in Natural Language Processing",
  year      = "2021",
  pages     = "829-834"
}

Table of contents

Prerequisites

Example

License

Prerequisites

conda create --name comb python=3.6
conda activate comb
pip install spacy
python -m spacy download en

For the nonlinear integer programming solver, we use

LINGO10.0

Note that educational institutions can obtain a free license to use the LINGO solver.

Example

Combine the 3 GEC systems listed in the paper using the IP approach. The three systems are UEdin-MS (https://aclanthology.org/W19-4427), Kakao (https://aclanthology.org/W19-4423), and Tohoku (https://aclanthology.org/D19-1119). The core functions for the IP objective are implemented in model.lg4. You can find model.lg4 under lingo/inputs.

  1. Run python prepare_data.py -dir . -list kakao uedinms tohoku to generate aggregated TP, FP, and FN counts. The counts files are stored under lingo/inputs.

  2. Load model.lg4 into the LINGO console and specify the input data path with the counts file path, select the INLP model, and run optimizations. Store the solutions to lingo/outputs/sol_kakao_uedinms_tohoku.txt.

  3. Run ./comb.sh . sol_kakao_uedinms_tohoku.txt to load LINGO solutions, merge and apply edits. The resulted blind test file can be found under submissions. It can be zipped and submitted to the BEA CodeLab website (https://competitions.codalab.org/competitions/20228) for evaluations.

The data folder provides individual GEC system output files, and .m2 files generated using ERRANT for the listed systems. For more information, please visit the ERRANT github page.

We include the IP combined .m2 files under merged_m2, and the corresponding text files under submissions.

License

The source code and models in this repository are licensed under the GNU General Public License v3.0 (see LICENSE). For further research interests and commercial use of the code and models, please contact Ruixi Lin ([email protected]) and Prof. Hwee Tou Ng ([email protected]).

Owner
NUS NLP Group
National University of Singapore
NUS NLP Group
O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning (CoRL 2021)

O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning Object-object Interaction Affordance Learning. For a given object-object int

Kaichun Mo 26 Nov 04, 2022
AI that generate music

PianoGPT ai that generate music try it here https://share.streamlit.io/annasajkh/pianogpt/main/main.py or here https://huggingface.co/spaces/Annas/Pia

Annas 28 Nov 27, 2022
PyTorch Code of "Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spatiotemporal Dynamics"

Memory In Memory Networks It is based on the paper Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spati

Yang Li 12 May 30, 2022
Official git repo for the CHIRP project

CHIRP Project This is the official git repository for the CHIRP project. Pull requests are accepted here, but for the moment, the main repository is s

Dan Smith 77 Jan 08, 2023
Graph Attention Networks

GAT Graph Attention Networks (Veličković et al., ICLR 2018): https://arxiv.org/abs/1710.10903 GAT layer t-SNE + Attention coefficients on Cora Overvie

Petar Veličković 2.6k Jan 05, 2023
TransVTSpotter: End-to-end Video Text Spotter with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 66 Dec 26, 2022
High level network definitions with pre-trained weights in TensorFlow

TensorNets High level network definitions with pre-trained weights in TensorFlow (tested with 2.1.0 = TF = 1.4.0). Guiding principles Applicability.

Taehoon Lee 1k Dec 13, 2022
Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

Hyeonwoo Kang 2.4k Dec 31, 2022
Generating Videos with Scene Dynamics

Generating Videos with Scene Dynamics This repository contains an implementation of Generating Videos with Scene Dynamics by Carl Vondrick, Hamed Pirs

Carl Vondrick 706 Jan 04, 2023
Code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty

Deep Deterministic Uncertainty This repository contains the code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic

Jishnu Mukhoti 69 Nov 28, 2022
Trading environnement for RL agents, backtesting and training.

TradzQAI Trading environnement for RL agents, backtesting and training. Live session with coinbasepro-python is finaly arrived ! Available sessions: L

Tony Denion 164 Oct 30, 2022
patchmatch和patchmatchstereo算法的python实现

patchmatch patchmatch以及patchmatchstereo算法的python版实现 patchmatch参考 github patchmatchstereo参考李迎松博士的c++版代码 由于patchmatchstereo没有做任何优化,并且是python的代码,主要是方便解析算

Sanders Bao 11 Dec 02, 2022
SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation

SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation This repo is the official implementation for SegTransVAE. Seg

Nguyen Truong Hai 4 Aug 04, 2022
Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

TianYuan 27 Nov 07, 2022
GAN encoders in PyTorch that could match PGGAN, StyleGAN v1/v2, and BigGAN. Code also integrates the implementation of these GANs.

MTV-TSA: Adaptable GAN Encoders for Image Reconstruction via Multi-type Latent Vectors with Two-scale Attentions. This is the official code release fo

owl 37 Dec 24, 2022
Self-Supervised CNN-GCN Autoencoder

GCNDepth Self-Supervised CNN-GCN Autoencoder GCNDepth: Self-supervised monocular depth estimation based on graph convolutional network To be published

53 Dec 14, 2022
Bayesian inference for Permuton-induced Chinese Restaurant Process (NeurIPS2021).

Permuton-induced Chinese Restaurant Process Note: Currently only the Matlab version is available, but a Python version will be available soon! This is

NTT Communication Science Laboratories 3 Dec 17, 2022
Pytorch based library to rank predicted bounding boxes using text/image user's prompts.

pytorch_clip_bbox: Implementation of the CLIP guided bbox ranking for Object Detection. Pytorch based library to rank predicted bounding boxes using t

Sergei Belousov 50 Nov 27, 2022
Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation

Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation The skip connections in U-Net pass features from the levels of enc

Boheng Cao 1 Dec 29, 2021
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ Getting started Prerequ

Cambridge Quantum 315 Jan 01, 2023