Portfolio Optimization and Quantitative Strategic Asset Allocation in Python

Overview

Riskfolio-Lib

Quantitative Strategic Asset Allocation, Easy for Everyone.

Buy Me a Coffee at ko-fi.com

GitHub stars Downloads Documentation Status GitHub license Binder

Description

Riskfolio-Lib is a library for making quantitative strategic asset allocation or portfolio optimization in Python made in Peru 🇵🇪 . Its objective is to help students, academics and practitioners to build investment portfolios based on mathematically complex models with low effort. It is built on top of cvxpy and closely integrated with pandas data structures.

Some of key functionalities that Riskfolio-Lib offers:

  • Mean Risk and Logarithmic Mean Risk (Kelly Criterion) Portfolio Optimization with 4 objective functions:

    • Minimum Risk.
    • Maximum Return.
    • Maximum Utility Function.
    • Maximum Risk Adjusted Return Ratio.
  • Mean Risk and Logarithmic Mean Risk (Kelly Criterion) Portfolio Optimization with 13 convex risk measures:

    • Standard Deviation.
    • Semi Standard Deviation.
    • Mean Absolute Deviation (MAD).
    • First Lower Partial Moment (Omega Ratio).
    • Second Lower Partial Moment (Sortino Ratio).
    • Conditional Value at Risk (CVaR).
    • Entropic Value at Risk (EVaR).
    • Worst Case Realization (Minimax Model).
    • Maximum Drawdown (Calmar Ratio) for uncompounded cumulative returns.
    • Average Drawdown for uncompounded cumulative returns.
    • Conditional Drawdown at Risk (CDaR) for uncompounded cumulative returns.
    • Entropic Drawdown at Risk (EDaR) for uncompounded cumulative returns.
    • Ulcer Index for uncompounded cumulative returns.
  • Risk Parity Portfolio Optimization with 10 convex risk measures:

    • Standard Deviation.
    • Semi Standard Deviation.
    • Mean Absolute Deviation (MAD).
    • First Lower Partial Moment (Omega Ratio).
    • Second Lower Partial Moment (Sortino Ratio).
    • Conditional Value at Risk (CVaR).
    • Entropic Value at Risk (EVaR).
    • Conditional Drawdown at Risk (CDaR) for uncompounded cumulative returns.
    • Entropic Drawdown at Risk (EDaR) for uncompounded cumulative returns.
    • Ulcer Index for uncompounded cumulative returns.
  • Hierarchical Clustering Portfolio Optimization: Hierarchical Risk Parity (HRP) and Hierarchical Equal Risk Contribution (HERC) with 22 risk measures:

    • Standard Deviation.
    • Variance.
    • Semi Standard Deviation.
    • Mean Absolute Deviation (MAD).
    • First Lower Partial Moment (Omega Ratio).
    • Second Lower Partial Moment (Sortino Ratio).
    • Value at Risk (VaR).
    • Conditional Value at Risk (CVaR).
    • Entropic Value at Risk (EVaR).
    • Worst Case Realization (Minimax Model).
    • Maximum Drawdown (Calmar Ratio) for compounded and uncompounded cumulative returns.
    • Average Drawdown for compounded and uncompounded cumulative returns.
    • Drawdown at Risk (DaR) for compounded and uncompounded cumulative returns.
    • Conditional Drawdown at Risk (CDaR) for compounded and uncompounded cumulative returns.
    • Entropic Drawdown at Risk (EDaR) for compounded and uncompounded cumulative returns.
    • Ulcer Index for compounded and uncompounded cumulative returns.
  • Nested Clustered Optimization (NCO) with four objective functions and the available risk measures to each objective:

    • Minimum Risk.
    • Maximum Return.
    • Maximum Utility Function.
    • Equal Risk Contribution.
  • Worst Case Mean Variance Portfolio Optimization.

  • Relaxed Risk Parity Portfolio Optimization.

  • Portfolio optimization with Black Litterman model.

  • Portfolio optimization with Risk Factors model.

  • Portfolio optimization with Black Litterman Bayesian model.

  • Portfolio optimization with Augmented Black Litterman model.

  • Portfolio optimization with constraints on tracking error and turnover.

  • Portfolio optimization with short positions and leveraged portfolios.

  • Portfolio optimization with constraints on number of assets and number of effective assets.

  • Tools to build efficient frontier for 13 risk measures.

  • Tools to build linear constraints on assets, asset classes and risk factors.

  • Tools to build views on assets and asset classes.

  • Tools to build views on risk factors.

  • Tools to calculate risk measures.

  • Tools to calculate risk contributions per asset.

  • Tools to calculate uncertainty sets for mean vector and covariance matrix.

  • Tools to calculate assets clusters based on codependence metrics.

  • Tools to estimate loadings matrix (Stepwise Regression and Principal Components Regression).

  • Tools to visualizing portfolio properties and risk measures.

  • Tools to build reports on Jupyter Notebook and Excel.

  • Option to use commercial optimization solver like MOSEK or GUROBI for large scale problems.

Documentation

Online documentation is available at Documentation.

The docs include a tutorial with examples that shows the capacities of Riskfolio-Lib.

Dependencies

Riskfolio-Lib supports Python 3.7+.

Installation requires:

Installation

The latest stable release (and older versions) can be installed from PyPI:

pip install riskfolio-lib

Citing

If you use Riskfolio-Lib for published work, please use the following BibTeX entrie:

@misc{riskfolio,
      author = {Dany Cajas},
      title = {Riskfolio-Lib (2.0.0)},
      year  = {2021},
      url   = {https://github.com/dcajasn/Riskfolio-Lib},
      }

Development

Riskfolio-Lib development takes place on Github: https://github.com/dcajasn/Riskfolio-Lib

RoadMap

The plan for this module is to add more functions that will be very useful to asset managers.

  • Add more functions based on suggestion of users.
Owner
Riskfolio
Finance and Python lover, looking for job opportunities in quantitative finance, investments and risk management.
Riskfolio
Awesome Human Pose Estimation

Human Pose Estimation Related Publication

Zhe Wang 1.2k Dec 26, 2022
[CVPR'22] Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast

wseg Overview The Pytorch implementation of Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast. [arXiv] Though image-level weakly

Ye Du 96 Dec 30, 2022
Code for CVPR2021 "Visualizing Adapted Knowledge in Domain Transfer". Visualization for domain adaptation. #explainable-ai

Visualizing Adapted Knowledge in Domain Transfer @inproceedings{hou2021visualizing, title={Visualizing Adapted Knowledge in Domain Transfer}, auth

Yunzhong Hou 80 Dec 25, 2022
Back to Basics: Efficient Network Compression via IMP

Back to Basics: Efficient Network Compression via IMP Authors: Max Zimmer, Christoph Spiegel, Sebastian Pokutta This repository contains the code to r

IOL Lab @ ZIB 1 Nov 19, 2021
Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.

Kaggle-titanic This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this reposito

Andrew Conti 800 Dec 15, 2022
One-line your code easily but still with the fun of doing so!

One-liner-iser One-line your code easily but still with the fun of doing so! Have YOU ever wanted to write one-line Python code, but don't have the sa

5 May 04, 2022
🔥 Cannlytics-powered artificial intelligence 🤖

Cannlytics AI 🔥 Cannlytics-powered artificial intelligence 🤖 🏗️ Installation 🏃‍♀️ Quickstart 🧱 Development 🦾 Automation 💸 Support 🏛️ License ?

Cannlytics 3 Nov 11, 2022
A fast Evolution Strategy implementation in Python

Evostra: Evolution Strategy for Python Evolution Strategy (ES) is an optimization technique based on ideas of adaptation and evolution. You can learn

Mika 251 Dec 08, 2022
Text-to-Image generation

Generate vivid Images for Any (Chinese) text CogView is a pretrained (4B-param) transformer for text-to-image generation in general domain. Read our p

THUDM 1.3k Dec 29, 2022
RLHive: a framework designed to facilitate research in reinforcement learning.

RLHive is a framework designed to facilitate research in reinforcement learning. It provides the components necessary to run a full RL experiment, for both single agent and multi agent environments.

88 Jan 05, 2023
Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions

Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions Usage Clone the code to local. https://github.com/tanlab/MI

Computational Biology and Machine Learning lab @ TOBB ETU 3 Oct 18, 2022
Unofficial PyTorch implementation of Fastformer based on paper "Fastformer: Additive Attention Can Be All You Need"."

Fastformer-PyTorch Unofficial PyTorch implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Usage : import t

Hong-Jia Chen 126 Dec 06, 2022
Official repository for "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation"

pair-emnlp2020 Official repository for the paper: Xinyu Hua and Lu Wang: PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long

Xinyu Hua 31 Oct 13, 2022
An 16kHz implementation of HiFi-GAN for soft-vc.

HiFi-GAN An 16kHz implementation of HiFi-GAN for soft-vc. Relevant links: Official HiFi-GAN repo HiFi-GAN paper Soft-VC repo Soft-VC paper Example Usa

Benjamin van Niekerk 42 Dec 27, 2022
Weakly Supervised Segmentation by Tensorflow.

Weakly Supervised Segmentation by Tensorflow. Implements semantic segmentation in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

CHENG-YOU LU 52 Dec 27, 2022
Code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition"

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings

Text2Music Emotion Embedding Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings Reference Emotion Embedding Spaces for Matching

Minz Won 50 Dec 05, 2022
Download from Onlyfans.com.

OnlySave: Onlyfans downloader Getting Started: Download the setup executable from the latest release. Install and run. Only works on Windows currently

4 May 30, 2022
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.13

Keon Lee 140 Dec 21, 2022
A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022)

A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022) https://arxiv.org/abs/2203.09388 Jianqi Ma, Zheto

MA Jianqi, shiki 104 Jan 05, 2023