A PyTorch toolkit for 2D Human Pose Estimation.

Overview

PyTorch-Pose

screenshot

PyTorch-Pose is a PyTorch implementation of the general pipeline for 2D single human pose estimation. The aim is to provide the interface of the training/inference/evaluation, and the dataloader with various data augmentation options for the most popular human pose databases (e.g., the MPII human pose, LSP and FLIC).

Some codes for data preparation and augmentation are brought from the Stacked hourglass network. Thanks to the original author.

Update: this repository is compatible with PyTorch 0.4.1/1.0 now!

Features

  • Multi-thread data loading
  • Multi-GPU training
  • Logger
  • Training/testing results visualization

Installation

  1. PyTorch (>= 0.4.1): Please follow the installation instruction of PyTorch. Note that the code is developed with Python2 and has not been tested with Python3 yet.

  2. Clone the repository with submodule

    git clone --recursive https://github.com/bearpaw/pytorch-pose.git
    
  3. Create a symbolic link to the images directory of the MPII dataset:

    ln -s PATH_TO_MPII_IMAGES_DIR data/mpii/images
    

    For training/testing on COCO, please refer to COCO Readme.

  1. Download annotation file:

Usage

Please refer to TRAINING.md for detailed training recipes!

Testing

You may download our pretrained models (e.g., 2-stack hourglass model) for a quick start.

Run the following command in terminal to evaluate the model on MPII validation split (The train/val split is from Tompson et al. CVPR 2015).

CUDA_VISIBLE_DEVICES=0 python example/main.py --dataset mpii -a hg --stacks 2 --blocks 1 --checkpoint checkpoint/mpii/hg_s2_b1 --resume checkpoint/mpii/hg_s2_b1/model_best.pth.tar -e -d
  • -a specifies a network architecture
  • --resume will load the weight from a specific model
  • -e stands for evaluation only
  • -d will visualize the network output. It can be also used during training

The result will be saved as a .mat file (preds_valid.mat), which is a 2958x16x2 matrix, in the folder specified by --checkpoint.

Evaluate the [email protected] score

Evaluate with MATLAB

You may use the matlab script evaluation/eval_PCKh.m to evaluate your predictions. The evaluation code is ported from Tompson et al. CVPR 2015.

The results ([email protected] score) trained using this code is reported in the following table.

Model Head Shoulder Elbow Wrist Hip Knee Ankle Mean
hg_s2_b1 (last) 95.80 94.57 88.12 83.31 86.24 80.88 77.44 86.76
hg_s2_b1 (best) 95.87 94.68 88.27 83.64 86.29 81.20 77.70 86.95
hg_s8_b1 (last) 96.79 95.19 90.08 85.32 87.48 84.26 80.73 88.64
hg_s8_b1 (best) 96.79 95.28 90.27 85.56 87.57 84.3 81.06 88.78

Training / validation curve is visualized as follows.

curve

Evaluate with Python

You may also evaluate the result by running python evaluation/eval_PCKh.py to evaluate the predictions. It will produce exactly the same result as that of the MATLAB. Thanks @sssruhan1 for the contribution.

Training

Run the following command in terminal to train an 8-stack of hourglass network on the MPII human pose dataset.

CUDA_VISIBLE_DEVICES=0 python example/main.py --dataset mpii -a hg --stacks 8 --blocks 1 --checkpoint checkpoint/mpii/hg8 -j 4

Here,

  • CUDA_VISIBLE_DEVICES=0 identifies the GPU devices you want to use. For example, use CUDA_VISIBLE_DEVICES=0,1 if you want to use two GPUs with ID 0 and 1.
  • -j specifies how many workers you want to use for data loading.
  • --checkpoint specifies where you want to save the models, the log and the predictions to.

Miscs

Supported dataset

Supported models

Contribute

Please create a pull request if you want to contribute.

Owner
Wei Yang
NVIDIA Robotics Research Lab
Wei Yang
DeepAL: Deep Active Learning in Python

DeepAL: Deep Active Learning in Python Python implementations of the following active learning algorithms: Random Sampling Least Confidence [1] Margin

Kuan-Hao Huang 583 Jan 03, 2023
Source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree.

self-driving-car In this repository I will share the source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree. Hope this might

Andrea Palazzi 2.4k Dec 29, 2022
Implementations of orthogonal and semi-orthogonal convolutions in the Fourier domain with applications to adversarial robustness

Orthogonalizing Convolutional Layers with the Cayley Transform This repository contains implementations and source code to reproduce experiments for t

CMU Locus Lab 36 Dec 30, 2022
CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces This is a repository for the following pape

17 Oct 13, 2022
Utility code for use with PyXLL

pyxll-utils There is no need to use this package as of PyXLL 5. All features from this package are now provided by PyXLL. If you were using this packa

PyXLL 10 Dec 18, 2021
Repository for self-supervised landmark discovery

self-supervised-landmarks Repository for self-supervised landmark discovery Requirements pytorch pynrrd (for 3d images) Usage The use of this models i

Riddhish Bhalodia 2 Apr 18, 2022
A curated list and survey of awesome Vision Transformers.

English | 简体中文 A curated list and survey of awesome Vision Transformers. You can use mind mapping software to open the mind mapping source file. You c

OpenMMLab 281 Dec 21, 2022
4th place solution to datafactory challenge by Intermarché.

Solution to Datafactory challenge by Intermarché. 4th place solution to datafactory challenge by Intermarché. The objective of the challenge is to pre

Raphael Sourty 11 Mar 19, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
A DeepStack custom model for detecting common objects in dark/night images and videos.

DeepStack_ExDark This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API for d

MOSES OLAFENWA 98 Dec 24, 2022
Texture mapping with variational auto-encoders

vae-textures This is an experiment with using variational autoencoders (VAEs) to perform mesh parameterization. This was also my first project using J

Alex Nichol 41 May 24, 2022
Train the HRNet model on ImageNet

High-resolution networks (HRNets) for Image classification News [2021/01/20] Add some stronger ImageNet pretrained models, e.g., the HRNet_W48_C_ssld_

HRNet 866 Jan 04, 2023
LSTM Neural Networks for Spectroscopic Studies of Type Ia Supernovae

Package Description The difficulties in acquiring spectroscopic data have been a major challenge for supernova surveys. snlstm is developed to provide

7 Oct 11, 2022
Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder

Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder Authors: - Eashan Adhikarla - Dan Luo - Dr. Brian D. Davison Abstract Many

Eashan Adhikarla 4 Dec 25, 2022
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

35 Nov 16, 2022
The second project in Python course on FCC

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Denise T 1 Dec 13, 2021
Code for NeurIPS 2021 paper 'Spatio-Temporal Variational Gaussian Processes'

Spatio-Temporal Variational GPs This repository is the official implementation of the methods in the publication: O. Hamelijnck, W.J. Wilkinson, N.A.

AaltoML 26 Sep 16, 2022
Official implementation of the method ContIG, for self-supervised learning from medical imaging with genomics

ContIG: Self-supervised Multimodal Contrastive Learning for Medical Imaging with Genetics This is the code implementation of the paper "ContIG: Self-s

Digital Health & Machine Learning 22 Dec 13, 2022
Flexible time series feature extraction & processing

tsflex is a toolkit for flexible time series processing & feature extraction, that is efficient and makes few assumptions about sequence data. Useful

PreDiCT.IDLab 206 Dec 28, 2022
Implementation for "Conditional entropy minimization principle for learning domain invariant representation features"

Implementation for "Conditional entropy minimization principle for learning domain invariant representation features". The code is reproduced from thi

1 Nov 02, 2022