Official implementation of the method ContIG, for self-supervised learning from medical imaging with genomics

Related tags

Deep LearningContIG
Overview

ContIG: Self-supervised Multimodal Contrastive Learning for Medical Imaging with Genetics

This is the code implementation of the paper "ContIG: Self-supervised Multimodal Contrastive Learning for Medical Imaging with Genetics".

If you find this repository useful, please consider citing our paper in your work:

@misc{contig2021,
      title={ContIG: Self-supervised Multimodal Contrastive Learning for Medical Imaging with Genetics}, 
      author={Aiham Taleb and Matthias Kirchler and Remo Monti and Christoph Lippert},
      year={2021},
      eprint={2111.13424},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

To run the experiments, you will have to have access to UK Biobank data (requires application) and will need to set up the data modalities properly.

We handle the paths to different external files with the paths.toml. Model checkpoints are stored in CHECKPOINTS_BASE_PATH (='checkpoints' by default). For some parts, we use plink and plink2 software, which you can download from here and here. Unzip and set the corresponding paths in the paths.toml file.

Python

Install the dependencies via

conda env create --file environment.yml

Setting up image data

See image_preprocessing for the code. We first use resize.py to find the retinal fundus circle, crop to that part of the image, and then filter out the darkest and brightest images with filtering_images.py.

After preprocessing the images, make sure to set BASE_IMG in paths.toml to the directory that contains the directories {left|right}/512_{left|right}/processed/.

Ancestry prediction

We only included individuals that were genetically most likely to be of european ancestry. We used the genotype-based prediction pipeline GenoPred; see documentation on the site, and put the path to the output (a .model_pred file in tsv format) into the ANCESTRY variable in paths.toml.

This ancestry prediction can also be replaced by the UKB variable 22006. In this case, create a tsv file with two columns, IID and EUR; set EUR = 1 for caucasians and EUR = 0 for others, and point the ANCESTRY variable in paths.toml to this file. Explicit ancestry prediction and the caucasian variable are mostly identical, but our ancestry prediction is a little more lenient and includes a few more individuals.

Setting up genetic data

We use three different genetic modalities in the paper.

Setting up Raw SNPs

Raw SNPs work mostly without preprocessing and use the basic microarray data from UKB. Make sure to set the BASE_GEN path in paths.toml to the directory that contains all the bed/bim/fam files from the UKB.

Setting up Polygenic Scores

PGS requires the imputed data. See the pgs directory for a reference to set everything up. Make sure to update the BASE_PGS to point to the output directory from that. We also include a list of scores used in the main paper.

Setting up Burden Scores

Burden scores are computed using the whole exome sequencing release from the UKB. We used faatpipe to preprocess this data; see there for details. Update the BASE_BURDEN variable in paths.toml to include the results (should point to a directory with combined_burdens_colnames.txt, combined_burdens_iid.txt and combined_burdens.h5).

Setting up phenotypic UKB data

Point the UKB_PHENO_FILE variable in paths.toml to the full phenotype csv file from the UKB data release and run export_card() from data.data_ukb.py to preprocess the data (only needs to be run once; there may be a bug with pandas >= 1.3 on some systems, so consider using pandas = 1.2.5 for this step).

You can ignore the BLOOD_BIOMARKERS variable, since it's not used in any of the experiments.

Setting up downstream tasks

Download and unzip the downstream tasks from PALM, RFMiD and APTOS and point the {PALM|RFMID|APTOS}_PATH variables in paths.toml correspondingly.

UKB downstream tasks are set up with the main UKB set above.

Training self-supervised models

ContIG

In order to train models with our method ContIG, use the script train_contig.py. In this script, it is possible to set many of the constants used in training, such as IMG_SIZE, BATCH_SIZE, LR, CM_EMBEDDING_SIZE, GENETICS_MODALITY and many others. We provide default values at the beginning of this script, which we use in our reported values. Please make sure to set the paths to datasets in paths.toml beforehand.

Baseline models

In order to train the baseline models, each script is named after the algorithm: SimCLR simclr.py, NNCLR nnclr.py, Simsiam simsiam.py, Barlow Twins barlow_twins.py, and BYOL byol.py

Each of these scripts allow for setting all the relevant hyper-parameters for training these baselines, such as max_epochs, PROJECTION_DIM, TEMPERATURE, and others. Please make sure to set the paths to datasets in paths.toml beforehand.

Evaluating Models

To fine-tune (=train) the models on downstream tasks, the following scripts are the starting points:

  • For APTOS Retinopathy detection: use aptos_diabetic_retinopathy.py
  • For RFMiD Multi-Disease classification: use rfmid_retinal_disease_classification.py
  • For PALM Myopia Segmentation: use palm_myopia_segmentation.py
  • For UK Biobank Cardiovascular discrete risk factors classification: use ukb_covariate_classification.py
  • For UK Biobank Cardiovascular continuous risk factors prediction (regression): use ukb_covariate_prediction.py

Each of the above scripts defines its hyper-parameters at the beginning of the respective files. A common variable however is CHECKPOINT_PATH, whose default value is None. If set to None, this means to train the model from scratch without loading any pretrained checkpoint. Otherwise, it loads the encoder weights from pretrained models.

Running explanations

Global explanations

Global explanations are implemented in feature_explanations.py. See the final_plots function for an example to create explanations with specific models.

Local explanations

Local explanations are implemented in local_explanations.py. Individuals for which to create explanations can be set with the INDIVIDUALS variable. See the final_plots function for an example to create explanations with specific models.

Running the GWAS

The GWAS is implemented in downstream_gwas.py. You can specify models for which to run the GWAS in the WEIGHT_PATHS dict and then run the run_all_gwas function to iterate over this dict.

Owner
Digital Health & Machine Learning
Digital Health & Machine Learning
Code for Discriminative Sounding Objects Localization (NeurIPS 2020)

Discriminative Sounding Objects Localization Code for our NeurIPS 2020 paper Discriminative Sounding Objects Localization via Self-supervised Audiovis

51 Dec 11, 2022
🔎 Monitor deep learning model training and hardware usage from your mobile phone 📱

Monitor deep learning model training and hardware usage from mobile. 🔥 Features Monitor running experiments from mobile phone (or laptop) Monitor har

labml.ai 1.2k Dec 25, 2022
AntroPy: entropy and complexity of (EEG) time-series in Python

AntroPy is a Python 3 package providing several time-efficient algorithms for computing the complexity of time-series. It can be used for example to e

Raphael Vallat 153 Dec 27, 2022
The Official PyTorch Implementation of DiscoBox.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision Paper | Project page | Demo (Youtube) | Demo (Bilib

NVIDIA Research Projects 89 Jan 09, 2023
PyTorch implementation of "ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recognition with Global Context" (INTERSPEECH 2020)

ContextNet ContextNet has CNN-RNN-transducer architecture and features a fully convolutional encoder that incorporates global context information into

Sangchun Ha 24 Nov 24, 2022
YOLOv5🚀 reproduction by Guo Quanhao using PaddlePaddle

YOLOv5-Paddle YOLOv5 🚀 reproduction by Guo Quanhao using PaddlePaddle 支持AutoBatch 支持AutoAnchor 支持GPU Memory 快速开始 使用AIStudio高性能环境快速构建YOLOv5训练(PaddlePa

QuanHao Guo 20 Nov 14, 2022
This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf

Behavior-Sequence-Transformer-Pytorch This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf This model

Jaime Ferrando Huertas 83 Jan 05, 2023
Code for CMaskTrack R-CNN (proposed in Occluded Video Instance Segmentation)

CMaskTrack R-CNN for OVIS This repo serves as the official code release of the CMaskTrack R-CNN model on the Occluded Video Instance Segmentation data

Q . J . Y 61 Nov 25, 2022
Using deep learning model to detect breast cancer.

Breast-Cancer-Detection Breast cancer is the most frequent cancer among women, with around one in every 19 women at risk. The number of cases of breas

1 Feb 13, 2022
[TIP 2021] SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction

SADRNet Paper link: SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction Requirements python

Multimedia Computing Group, Nanjing University 99 Dec 30, 2022
Progressive Coordinate Transforms for Monocular 3D Object Detection

Progressive Coordinate Transforms for Monocular 3D Object Detection This repository is the official implementation of PCT. Introduction In this paper,

58 Nov 06, 2022
CharacterGAN: Few-Shot Keypoint Character Animation and Reposing

CharacterGAN Implementation of the paper "CharacterGAN: Few-Shot Keypoint Character Animation and Reposing" by Tobias Hinz, Matthew Fisher, Oliver Wan

Tobias Hinz 181 Dec 27, 2022
Rapid experimentation and scaling of deep learning models on molecular and crystal graphs.

LitMatter A template for rapid experimentation and scaling deep learning models on molecular and crystal graphs. How to use Clone this repository and

Nathan Frey 32 Dec 06, 2022
An implementation for `Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction`

Text2Event An implementation for Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction Please contact Yaojie Lu (@

Roger 153 Jan 07, 2023
《Dual-Resolution Correspondence Network》(NeurIPS 2020)

Dual-Resolution Correspondence Network Dual-Resolution Correspondence Network, NeurIPS 2020 Dependency All dependencies are included in asset/dualrcne

Active Vision Laboratory 45 Nov 21, 2022
Pytorch implementation of Hinton's Dynamic Routing Between Capsules

pytorch-capsule A Pytorch implementation of Hinton's "Dynamic Routing Between Capsules". https://arxiv.org/pdf/1710.09829.pdf Thanks to @naturomics fo

Tim Omernick 625 Oct 27, 2022
Finetuning Pipeline

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
Deep Halftoning with Reversible Binary Pattern

Deep Halftoning with Reversible Binary Pattern ICCV Paper | Project Website | BibTex Overview Existing halftoning algorithms usually drop colors and f

Menghan Xia 17 Nov 22, 2022
Codes accompanying the paper "Learning Nearly Decomposable Value Functions with Communication Minimization" (ICLR 2020)

NDQ: Learning Nearly Decomposable Value Functions with Communication Minimization Note This codebase accompanies paper Learning Nearly Decomposable Va

Tonghan Wang 69 Nov 26, 2022
custom pytorch implementation of MoCo v3

MoCov3-pytorch custom implementation of MoCov3 [arxiv]. I made minor modifications based on the official MoCo repository [github]. No ViT part code an

39 Nov 14, 2022