A DeepStack custom model for detecting common objects in dark/night images and videos.

Overview

DeepStack_ExDark

This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API for detecting 12 common objects (including people) in the dark/night images and videos. The Model was trained on the ExDark dataset dataset.

  • Create API and Detect Objects
  • Discover more Custom Models
  • Train your own Model

Create API and Detect Objects

The Trained Model can detect the following objects in dark/night images and videos.

  • Bicycle
  • Boat
  • Bottle
  • Bus
  • Chair
  • Car
  • Cat
  • Cup
  • Dog
  • Motorbike
  • People
  • Table

To start detecting, follow the steps below

  • Install DeepStack: Install DeepStack AI Server with instructions on DeepStack's documentation via https://docs.deepstack.cc

  • Download Custom Model: Download the trained custom model dark.pt for ExDark from this GitHub release. Create a folder on your machine and move the downloaded model to this folder.

    E.g A path on Windows Machine C\Users\MyUser\Documents\DeepStack-Models, which will make your model file path C\Users\MyUser\Documents\DeepStack-Models\dark.pt

  • Run DeepStack: To run DeepStack AI Server with the custom ExDark model, run the command that applies to your machine as detailed on DeepStack's documentation linked here.

    E.g

    For a Windows version, you run the command below

    deepstack --MODELSTORE-DETECTION "C\Users\MyUser\Documents\DeepStack-Models" --PORT 80

    For a Linux machine

    sudo docker run -v /home/MyUser/Documents/DeepStack-Models:/modelstore/detection -p 80:5000 deepquestai/deepstack

    Once DeepStack runs, you will see a log like the one below in your Terminal/Console

    That means DeepStack is running your custom dark.pt model and now ready to start detecting objects in night/dark images via the API endpoint http://localhost:80/v1/vision/custom/dark or http://your_machine_ip:80/v1/vision/custom/dark

  • Detect Objects in night image: You can detect objects in an image by sending a POST request to the url mentioned above with the paramater image set to an image using any proggramming language or with a tool like POSTMAN. For the purpose of this repository, we have provided a sample Python code below.

    • A sample image can be found in images/image.jpg of this repository

    • Install Python and install the DeepStack Python SDK via the command below

      pip install deepstack_sdk
    • Run the Python file detect.py in this repository.

      python detect.py
    • After the code runs, you will find a new image in images/image_detected.jpg with the detection visualized, with the following results printed in the Terminal/Console.

      Name: People
      Confidence: 0.74210495
      x_min: 616
      x_max: 672
      y_min: 224
      y_max: 323
      -----------------------
      Name: Dog
      Confidence: 0.82523036
      x_min: 250
      x_max: 327
      y_min: 288
      y_max: 349
      -----------------------
      Name: Dog
      Confidence: 0.86660975
      x_min: 403
      x_max: 485
      y_min: 283
      y_max: 341
      -----------------------
      Name: Dog
      Confidence: 0.87793124
      x_min: 508
      x_max: 609
      y_min: 309
      y_max: 370
      -----------------------
      Name: Dog
      Confidence: 0.89132285
      x_min: 286
      x_max: 372
      y_min: 316
      y_max: 393
      -----------------------
      

    • You can try running detection for other night/dark images.

Discover more Custom Models

For more custom DeepStack models that has been trained and ready to use, visit the Custom Models sample page on DeepStack's documentation https://docs.deepstack.cc/custom-models-samples/ .

Train your own Model

If you will like to train a custom model yourself, follow the instructions below.

  • Prepare and Annotate: Collect images on and annotate object(s) you plan to detect as detailed here
  • Train your Model: Train the model as detailed here
You might also like...
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Search and filter videos based on objects that appear in them using convolutional neural networks
Search and filter videos based on objects that appear in them using convolutional neural networks

Thingscoop: Utility for searching and filtering videos based on their content Description Thingscoop is a command-line utility for analyzing videos se

[ICCV2021] Learning to Track Objects from Unlabeled Videos

Unsupervised Single Object Tracking (USOT) 🌿 Learning to Track Objects from Unlabeled Videos Jilai Zheng, Chao Ma, Houwen Peng and Xiaokang Yang 2021

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment This is a pytorch project for the paper Seeing Dynamic Scene i

Dark Finix: All in one hacking framework with almost 100 tools
Dark Finix: All in one hacking framework with almost 100 tools

Dark Finix - Hacking Framework. Dark Finix is a all in one hacking framework wit

Source code for CVPR2022 paper
Source code for CVPR2022 paper "Abandoning the Bayer-Filter to See in the Dark"

Abandoning the Bayer-Filter to See in the Dark (CVPR 2022) Paper: https://arxiv.org/abs/2203.04042 (Arxiv version) This code includes the training and

Example-custom-ml-block-keras - Custom Keras ML block example for Edge Impulse

Custom Keras ML block example for Edge Impulse This repository is an example on

Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.
Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.

Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers Description: Model Optimizer in Intel(r) OpenVINO(tm

This project aims to segment 4 common retinal lesions from Fundus Images.

This project aims to segment 4 common retinal lesions from Fundus Images.

Comments
  • Please confirm processing speed

    Please confirm processing speed

    Hello @OlafenwaMoses !

    First: Thank you for your work on this!!

    Now, I just replaced the standard deepstack model with yours, and the speed at which my machine is processing each frame is about half against standard deepstack model. That is: It takes almost twice the time to inspect a video frame as before.

    Is this correct ?

    On the other hand: it detects People (which is the only object I am interested in) with about twice the certainity, when compared against vanilla deepstack model. Nice !!

    Thx again!

    opened by euquiq 1
  • Annotated Images?

    Annotated Images?

    Do you have the original annotated images and would you be willing to publish or share them?

    The YOLOv5x model is being a bit slow for my use case. I would like to try to optimize this data set for my needs, but would rather not have to re-annotate the original exdark set if the work has already been done.

    Thanks

    opened by BeanBagKing 0
  • Class labels inconsistent with default model

    Class labels inconsistent with default model

    Not sure if this is an issue or feature request but noticed that the class labels of this model dont match the default model. Specifically, ExDark uses "person" vs "People" and "motorcycle" vs "Motorbike". There is also a capitalisation difference in the class names. This makes it slightly more complicated to configure client applications (e.g. Blue Iris) to filter in/out classes of objects.

    I imagine that "normalising" data could be a challenge as more custom models appear but it could also be a real advantage of deepstack if possible.

    opened by PeteBa 1
Releases(v1)
  • v1(May 5, 2021)

    A DeepStack Custom Model for object detection API to detect objects in the dark/night images. It detects the following objects

    • Bicycle
    • Boat
    • Bottle
    • Bus
    • Chair
    • Car
    • Cat
    • Cup
    • Dog
    • Motorbike
    • People
    • Table

    Download the model dark.pt from the Assets section (below) in this release.

    This Model a YOLOv5 DeepStack custom model and was trained for 50 epochs, generating a best model with the following evaluation result.

    [email protected]: 0.751 [email protected]: 0.485

    Source code(tar.gz)
    Source code(zip)
    dark.pt(169.37 MB)
Owner
MOSES OLAFENWA
Software Engineer @Microsoft , A self-Taught computer programmer, Deep Learning, Computer Vision Researcher and Developer. Creator of ImageAI.
MOSES OLAFENWA
A repository for generating stylized talking 3D and 3D face

style_avatar A repository for generating stylized talking 3D faces and 2D videos. This is the repository for paper Imitating Arbitrary Talking Style f

Haozhe Wu 191 Dec 22, 2022
Code for "Human Pose Regression with Residual Log-likelihood Estimation", ICCV 2021 Oral

Human Pose Regression with Residual Log-likelihood Estimation [Paper] [arXiv] [Project Page] Human Pose Regression with Residual Log-likelihood Estima

JeffLi 347 Dec 24, 2022
Toontown: Galaxy, a new Toontown game based on Disney's Toontown Online

Toontown: Galaxy The official archive repo for Toontown: Galaxy, a new Toontown

1 Feb 15, 2022
Learning Skeletal Articulations with Neural Blend Shapes

This repository provides an end-to-end library for automatic character rigging and blend shapes generation as well as a visualization tool. It is based on our work Learning Skeletal Articulations wit

Peizhuo 504 Dec 30, 2022
This folder contains the python code of UR5E's advanced forward kinematics model.

This folder contains the python code of UR5E's advanced forward kinematics model. By entering the angle of the joint of UR5e, the detailed coordinates of up to 48 points around the robot arm can be c

Qiang Wang 4 Sep 17, 2022
3D-aware GANs based on NeRF (arXiv).

CIPS-3D This repository will contain the code of the paper, CIPS-3D: A 3D-Aware Generator of GANs Based on Conditionally-Independent Pixel Synthesis.

Peterou 563 Dec 31, 2022
Implementation of the paper "Language-agnostic representation learning of source code from structure and context".

Code Transformer This is an official PyTorch implementation of the CodeTransformer model proposed in: D. Zügner, T. Kirschstein, M. Catasta, J. Leskov

Daniel Zügner 131 Dec 13, 2022
CBKH: The Cornell Biomedical Knowledge Hub

Cornell Biomedical Knowledge Hub (CBKH) CBKG integrates data from 18 publicly available biomedical databases. The current version of CBKG contains a t

44 Dec 21, 2022
Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Zhengzhong Tu 5 Sep 16, 2022
Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Det

123 Jan 04, 2023
EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks

EdMIPS is an efficient algorithm to search the optimal mixed-precision neural network directly without proxy task on ImageNet given computation budgets. It can be applied to many popular network arch

Zhaowei Cai 47 Dec 30, 2022
Implementation of BI-RADS-BERT & The Advantages of Section Tokenization.

BI-RADS BERT Implementation of BI-RADS-BERT & The Advantages of Section Tokenization. This implementation could be used on other radiology in house co

1 May 17, 2022
This repository collects 100 papers related to negative sampling methods.

Negative-Sampling-Paper This repository collects 100 papers related to negative sampling methods, covering multiple research fields such as Recommenda

RUCAIBox 119 Dec 29, 2022
HGCN: Harmonic Gated Compensation Network For Speech Enhancement

HGCN The official repo of "HGCN: Harmonic Gated Compensation Network For Speech Enhancement", which was accepted at ICASSP2022. How to use step1: Calc

ScorpioMiku 33 Nov 14, 2022
A fast model to compute optical flow between two input images.

DCVNet: Dilated Cost Volumes for Fast Optical Flow This repository contains our implementation of the paper: @InProceedings{jiang2021dcvnet, title={

Huaizu Jiang 8 Sep 27, 2021
Milano is a tool for automating hyper-parameters search for your models on a backend of your choice.

Milano (This is a research project, not an official NVIDIA product.) Documentation https://nvidia.github.io/Milano Milano (Machine learning autotuner

NVIDIA Corporation 147 Dec 17, 2022
The official codes of "Semi-supervised Models are Strong Unsupervised Domain Adaptation Learners".

SSL models are Strong UDA learners Introduction This is the official code of paper "Semi-supervised Models are Strong Unsupervised Domain Adaptation L

Yabin Zhang 26 Dec 26, 2022
An elaborate and exhaustive paper list for Named Entity Recognition (NER)

Named-Entity-Recognition-NER-Papers by Pengfei Liu, Jinlan Fu and other contributors. An elaborate and exhaustive paper list for Named Entity Recognit

Pengfei Liu 388 Dec 18, 2022
Simple object detection app with streamlit

object-detection-app Simple object detection app with streamlit. Upload an image and perform object detection. Adjust the confidence threshold to see

Robin Cole 68 Jan 02, 2023
A MatConvNet-based implementation of the Fully-Convolutional Networks for image segmentation

MatConvNet implementation of the FCN models for semantic segmentation This package contains an implementation of the FCN models (training and evaluati

VLFeat.org 175 Feb 18, 2022