A DeepStack custom model for detecting common objects in dark/night images and videos.

Overview

DeepStack_ExDark

This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API for detecting 12 common objects (including people) in the dark/night images and videos. The Model was trained on the ExDark dataset dataset.

  • Create API and Detect Objects
  • Discover more Custom Models
  • Train your own Model

Create API and Detect Objects

The Trained Model can detect the following objects in dark/night images and videos.

  • Bicycle
  • Boat
  • Bottle
  • Bus
  • Chair
  • Car
  • Cat
  • Cup
  • Dog
  • Motorbike
  • People
  • Table

To start detecting, follow the steps below

  • Install DeepStack: Install DeepStack AI Server with instructions on DeepStack's documentation via https://docs.deepstack.cc

  • Download Custom Model: Download the trained custom model dark.pt for ExDark from this GitHub release. Create a folder on your machine and move the downloaded model to this folder.

    E.g A path on Windows Machine C\Users\MyUser\Documents\DeepStack-Models, which will make your model file path C\Users\MyUser\Documents\DeepStack-Models\dark.pt

  • Run DeepStack: To run DeepStack AI Server with the custom ExDark model, run the command that applies to your machine as detailed on DeepStack's documentation linked here.

    E.g

    For a Windows version, you run the command below

    deepstack --MODELSTORE-DETECTION "C\Users\MyUser\Documents\DeepStack-Models" --PORT 80

    For a Linux machine

    sudo docker run -v /home/MyUser/Documents/DeepStack-Models:/modelstore/detection -p 80:5000 deepquestai/deepstack

    Once DeepStack runs, you will see a log like the one below in your Terminal/Console

    That means DeepStack is running your custom dark.pt model and now ready to start detecting objects in night/dark images via the API endpoint http://localhost:80/v1/vision/custom/dark or http://your_machine_ip:80/v1/vision/custom/dark

  • Detect Objects in night image: You can detect objects in an image by sending a POST request to the url mentioned above with the paramater image set to an image using any proggramming language or with a tool like POSTMAN. For the purpose of this repository, we have provided a sample Python code below.

    • A sample image can be found in images/image.jpg of this repository

    • Install Python and install the DeepStack Python SDK via the command below

      pip install deepstack_sdk
    • Run the Python file detect.py in this repository.

      python detect.py
    • After the code runs, you will find a new image in images/image_detected.jpg with the detection visualized, with the following results printed in the Terminal/Console.

      Name: People
      Confidence: 0.74210495
      x_min: 616
      x_max: 672
      y_min: 224
      y_max: 323
      -----------------------
      Name: Dog
      Confidence: 0.82523036
      x_min: 250
      x_max: 327
      y_min: 288
      y_max: 349
      -----------------------
      Name: Dog
      Confidence: 0.86660975
      x_min: 403
      x_max: 485
      y_min: 283
      y_max: 341
      -----------------------
      Name: Dog
      Confidence: 0.87793124
      x_min: 508
      x_max: 609
      y_min: 309
      y_max: 370
      -----------------------
      Name: Dog
      Confidence: 0.89132285
      x_min: 286
      x_max: 372
      y_min: 316
      y_max: 393
      -----------------------
      

    • You can try running detection for other night/dark images.

Discover more Custom Models

For more custom DeepStack models that has been trained and ready to use, visit the Custom Models sample page on DeepStack's documentation https://docs.deepstack.cc/custom-models-samples/ .

Train your own Model

If you will like to train a custom model yourself, follow the instructions below.

  • Prepare and Annotate: Collect images on and annotate object(s) you plan to detect as detailed here
  • Train your Model: Train the model as detailed here
You might also like...
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Search and filter videos based on objects that appear in them using convolutional neural networks
Search and filter videos based on objects that appear in them using convolutional neural networks

Thingscoop: Utility for searching and filtering videos based on their content Description Thingscoop is a command-line utility for analyzing videos se

[ICCV2021] Learning to Track Objects from Unlabeled Videos

Unsupervised Single Object Tracking (USOT) 🌿 Learning to Track Objects from Unlabeled Videos Jilai Zheng, Chao Ma, Houwen Peng and Xiaokang Yang 2021

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment This is a pytorch project for the paper Seeing Dynamic Scene i

Dark Finix: All in one hacking framework with almost 100 tools
Dark Finix: All in one hacking framework with almost 100 tools

Dark Finix - Hacking Framework. Dark Finix is a all in one hacking framework wit

Source code for CVPR2022 paper
Source code for CVPR2022 paper "Abandoning the Bayer-Filter to See in the Dark"

Abandoning the Bayer-Filter to See in the Dark (CVPR 2022) Paper: https://arxiv.org/abs/2203.04042 (Arxiv version) This code includes the training and

Example-custom-ml-block-keras - Custom Keras ML block example for Edge Impulse

Custom Keras ML block example for Edge Impulse This repository is an example on

Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.
Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.

Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers Description: Model Optimizer in Intel(r) OpenVINO(tm

This project aims to segment 4 common retinal lesions from Fundus Images.

This project aims to segment 4 common retinal lesions from Fundus Images.

Comments
  • Please confirm processing speed

    Please confirm processing speed

    Hello @OlafenwaMoses !

    First: Thank you for your work on this!!

    Now, I just replaced the standard deepstack model with yours, and the speed at which my machine is processing each frame is about half against standard deepstack model. That is: It takes almost twice the time to inspect a video frame as before.

    Is this correct ?

    On the other hand: it detects People (which is the only object I am interested in) with about twice the certainity, when compared against vanilla deepstack model. Nice !!

    Thx again!

    opened by euquiq 1
  • Annotated Images?

    Annotated Images?

    Do you have the original annotated images and would you be willing to publish or share them?

    The YOLOv5x model is being a bit slow for my use case. I would like to try to optimize this data set for my needs, but would rather not have to re-annotate the original exdark set if the work has already been done.

    Thanks

    opened by BeanBagKing 0
  • Class labels inconsistent with default model

    Class labels inconsistent with default model

    Not sure if this is an issue or feature request but noticed that the class labels of this model dont match the default model. Specifically, ExDark uses "person" vs "People" and "motorcycle" vs "Motorbike". There is also a capitalisation difference in the class names. This makes it slightly more complicated to configure client applications (e.g. Blue Iris) to filter in/out classes of objects.

    I imagine that "normalising" data could be a challenge as more custom models appear but it could also be a real advantage of deepstack if possible.

    opened by PeteBa 1
Releases(v1)
  • v1(May 5, 2021)

    A DeepStack Custom Model for object detection API to detect objects in the dark/night images. It detects the following objects

    • Bicycle
    • Boat
    • Bottle
    • Bus
    • Chair
    • Car
    • Cat
    • Cup
    • Dog
    • Motorbike
    • People
    • Table

    Download the model dark.pt from the Assets section (below) in this release.

    This Model a YOLOv5 DeepStack custom model and was trained for 50 epochs, generating a best model with the following evaluation result.

    [email protected]: 0.751 [email protected]: 0.485

    Source code(tar.gz)
    Source code(zip)
    dark.pt(169.37 MB)
Owner
MOSES OLAFENWA
Software Engineer @Microsoft , A self-Taught computer programmer, Deep Learning, Computer Vision Researcher and Developer. Creator of ImageAI.
MOSES OLAFENWA
MetaDrive: Composing Diverse Scenarios for Generalizable Reinforcement Learning

MetaDrive: Composing Diverse Driving Scenarios for Generalizable RL [ Documentation | Demo Video ] MetaDrive is a driving simulator with the following

DeciForce: Crossroads of Machine Perception and Autonomy 276 Jan 04, 2023
ECCV2020 paper: Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code and Data.

This repo contains some of the codes for the following paper Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code

Xuewen Yang 56 Dec 08, 2022
Light-SERNet: A lightweight fully convolutional neural network for speech emotion recognition

Light-SERNet This is the Tensorflow 2.x implementation of our paper "Light-SERNet: A lightweight fully convolutional neural network for speech emotion

Arya Aftab 29 Nov 12, 2022
Pytorch implementation of "Neural Wireframe Renderer: Learning Wireframe to Image Translations"

Neural Wireframe Renderer: Learning Wireframe to Image Translations Pytorch implementation of ideas from the paper Neural Wireframe Renderer: Learning

Yuan Xue 7 Nov 14, 2022
SMIS - Semantically Multi-modal Image Synthesis(CVPR 2020)

Semantically Multi-modal Image Synthesis Project page / Paper / Demo Semantically Multi-modal Image Synthesis(CVPR2020). Zhen Zhu, Zhiliang Xu, Anshen

316 Dec 01, 2022
OneFlow is a performance-centered and open-source deep learning framework.

OneFlow OneFlow is a performance-centered and open-source deep learning framework. Latest News Version 0.5.0 is out! First class support for eager exe

OneFlow 4.2k Jan 07, 2023
A benchmark dataset for emulating atmospheric radiative transfer in weather and climate models with machine learning (NeurIPS 2021 Datasets and Benchmarks Track)

ClimART - A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models Official PyTorch Implementation Using deep le

21 Dec 31, 2022
SAPIEN Manipulation Skill Benchmark

ManiSkill Benchmark SAPIEN Manipulation Skill Benchmark (abbreviated as ManiSkill, pronounced as "Many Skill") is a large-scale learning-from-demonstr

Hao Su's Lab, UCSD 107 Jan 08, 2023
Code for the CIKM 2019 paper "DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting".

Dual Self-Attention Network for Multivariate Time Series Forecasting 20.10.26 Update: Due to the difficulty of installation and code maintenance cause

Kyon Huang 223 Dec 16, 2022
YOLOv5 Series Multi-backbone, Pruning and quantization Compression Tool Box.

YOLOv5-Compression Update News Requirements 环境安装 pip install -r requirements.txt Evaluation metric Visdrone Model mAP ZhangYuan 719 Jan 02, 2023

A dual benchmarking study of visual forgery and visual forensics techniques

A dual benchmarking study of facial forgery and facial forensics In recent years, visual forgery has reached a level of sophistication that humans can

8 Jul 06, 2022
A collection of resources on GAN Inversion.

This repo is a collection of resources on GAN inversion, as a supplement for our survey

CVPR 2021 Official Pytorch Code for UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training

UC2 UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training Mingyang Zhou, Luowei Zhou, Shuohang Wang, Yu Cheng, Linjie Li, Zhou Yu,

Mingyang Zhou 28 Dec 30, 2022
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022
A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python.

c is for Camera A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python. The purpose of this project is to explore and underst

Daniele Procida 146 Sep 26, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
PointCNN: Convolution On X-Transformed Points (NeurIPS 2018)

PointCNN: Convolution On X-Transformed Points Created by Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Introduction PointCNN

Yangyan Li 1.3k Dec 21, 2022
The code uses SegFormer for Semantic Segmentation on Drone Dataset.

SegFormer_Segmentation The code uses SegFormer for Semantic Segmentation on Drone Dataset. The details for the SegFormer can be obtained from the foll

Dr. Sander Ali Khowaja 1 May 08, 2022
Neural Re-rendering for Full-frame Video Stabilization

NeRViS: Neural Re-rendering for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 9 Jun 17, 2022
A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution.

Awesome Pretrained StyleGAN2 A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution. Note the readme is a

Justin 1.1k Dec 24, 2022