Train the HRNet model on ImageNet

Overview

High-resolution networks (HRNets) for Image classification

News

Introduction

This is the official code of high-resolution representations for ImageNet classification. We augment the HRNet with a classification head shown in the figure below. First, the four-resolution feature maps are fed into a bottleneck and the number of output channels are increased to 128, 256, 512, and 1024, respectively. Then, we downsample the high-resolution representations by a 2-strided 3x3 convolution outputting 256 channels and add them to the representations of the second-high-resolution representations. This process is repeated two times to get 1024 channels over the small resolution. Last, we transform 1024 channels to 2048 channels through a 1x1 convolution, followed by a global average pooling operation. The output 2048-dimensional representation is fed into the classifier.

ImageNet pretrained models

HRNetV2 ImageNet pretrained models are now available!

model #Params GFLOPs top-1 error top-5 error Link
HRNet-W18-C-Small-v1 13.2M 1.49 27.7% 9.3% OneDrive/BaiduYun(Access Code:v3sw)
HRNet-W18-C-Small-v2 15.6M 2.42 24.9% 7.6% OneDrive/BaiduYun(Access Code:bnc9)
HRNet-W18-C 21.3M 3.99 23.2% 6.6% OneDrive/BaiduYun(Access Code:r5xn)
HRNet-W30-C 37.7M 7.55 21.8% 5.8% OneDrive/BaiduYun(Access Code:ajc1)
HRNet-W32-C 41.2M 8.31 21.5% 5.8% OneDrive/BaiduYun(Access Code:itc1)
HRNet-W40-C 57.6M 11.8 21.1% 5.5% OneDrive/BaiduYun(Access Code:i58x)
HRNet-W44-C 67.1M 13.9 21.1% 5.6% OneDrive/BaiduYun(Access Code:3imd)
HRNet-W48-C 77.5M 16.1 20.7% 5.5% OneDrive/BaiduYun(Access Code:68g2)
HRNet-W64-C 128.1M 26.9 20.5% 5.4% OneDrive/BaiduYun(Access Code:6kw4)

Newly added checkpoints:

model #Params GFLOPs top-1 error Link
HRNet-W18-C (w/ CosineLR + CutMix + 300epochs) 21.3M 3.99 22.1% Link
HRNet-W48-C (w/ CosineLR + CutMix + 300epochs) 77.5M 16.1 18.9% Link
HRNet-W18-C-ssld (converted from PaddlePaddle) 21.3M 3.99 18.8% Link
HRNet-W48-C-ssld (converted from PaddlePaddle) 77.5M 16.1 16.4% Link

In the above Table, the first 2 checkpoints are trained with CosineLR, CutMix data augmentation and for longer epochs, i.e., 300epochs. The other two checkpoints are converted from PaddleClas. Please refer to SSLD tutorial for more details.

Quick start

Install

  1. Install PyTorch=0.4.1 following the official instructions
  2. git clone https://github.com/HRNet/HRNet-Image-Classification
  3. Install dependencies: pip install -r requirements.txt

Data preparation

You can follow the Pytorch implementation: https://github.com/pytorch/examples/tree/master/imagenet

The data should be under ./data/imagenet/images/.

Train and test

Please specify the configuration file.

For example, train the HRNet-W18 on ImageNet with a batch size of 128 on 4 GPUs:

python tools/train.py --cfg experiments/cls_hrnet_w18_sgd_lr5e-2_wd1e-4_bs32_x100.yaml

For example, test the HRNet-W18 on ImageNet on 4 GPUs:

python tools/valid.py --cfg experiments/cls_hrnet_w18_sgd_lr5e-2_wd1e-4_bs32_x100.yaml --testModel hrnetv2_w18_imagenet_pretrained.pth

Other applications of HRNet

Citation

If you find this work or code is helpful in your research, please cite:

@inproceedings{SunXLW19,
  title={Deep High-Resolution Representation Learning for Human Pose Estimation},
  author={Ke Sun and Bin Xiao and Dong Liu and Jingdong Wang},
  booktitle={CVPR},
  year={2019}
}

@article{WangSCJDZLMTWLX19,
  title={Deep High-Resolution Representation Learning for Visual Recognition},
  author={Jingdong Wang and Ke Sun and Tianheng Cheng and 
          Borui Jiang and Chaorui Deng and Yang Zhao and Dong Liu and Yadong Mu and 
          Mingkui Tan and Xinggang Wang and Wenyu Liu and Bin Xiao},
  journal   = {TPAMI}
  year={2019}
}

Reference

[1] Deep High-Resolution Representation Learning for Visual Recognition. Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui Tan, Xinggang Wang, Wenyu Liu, Bin Xiao. Accepted by TPAMI. download

Comments
Releases(PretrainedWeights)
Owner
HRNet
Code for pose estimation is available at https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
HRNet
Second-Order Neural ODE Optimizer, NeurIPS 2021 spotlight

Second-order Neural ODE Optimizer (NeurIPS 2021 Spotlight) [arXiv] ✔️ faster convergence in wall-clock time | ✔️ O(1) memory cost | ✔️ better test-tim

Guan-Horng Liu 39 Oct 22, 2022
A toolset for creating Qualtrics-based IAT experiments

Qualtrics IAT Tool A web app for generating the Implicit Association Test (IAT) running on Qualtrics Online Web App The app is hosted by Streamlit, a

0 Feb 12, 2022
[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets

[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets Introduction This repo contains the source code accompanying the paper: Well-tuned Sim

52 Jan 04, 2023
Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based Analysis Framework"

Privacy-Aware Inverse RL (PRIL) Analysis Framework Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based

1 Dec 06, 2021
dataset for ECCV 2020 "Motion Capture from Internet Videos"

Motion Capture from Internet Videos Motion Capture from Internet Videos Junting Dong*, Qing Shuai*, Yuanqing Zhang, Xian Liu, Xiaowei Zhou, Hujun Bao

ZJU3DV 98 Dec 07, 2022
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
Pytorch implementation of the popular Improv RNN model originally proposed by the Magenta team.

Pytorch Implementation of Improv RNN Overview This code is a pytorch implementation of the popular Improv RNN model originally implemented by the Mage

Sebastian Murgul 3 Nov 11, 2022
基于Pytorch实现优秀的自然图像分割框架!(包括FCN、U-Net和Deeplab)

语义分割学习实验-基于VOC数据集 usage: 下载VOC数据集,将JPEGImages SegmentationClass两个文件夹放入到data文件夹下。 终端切换到目标目录,运行python train.py -h查看训练 (torch) Li Xiang 28 Dec 21, 2022

BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalanced Tongue Data

Balanced-Evolutionary-Semi-Stacking Code for the paper ''BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalan

0 Jan 16, 2022
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
This is Official implementation for "Pose-guided Feature Disentangling for Occluded Person Re-Identification Based on Transformer" in AAAI2022

PFD:Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer This repo is the official implementation of "Pose-gui

Tao Wang 93 Dec 18, 2022
This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our paper "Accounting for Gaussian Process Imprecision in Bayesian Optimization"

Prior-RObust Bayesian Optimization (PROBO) Introduction, TOC This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our

Julian Rodemann 2 Mar 19, 2022
Transfer Learning Remote Sensing

Transfer_Learning_Remote_Sensing Simulation R codes for data generation and visualizations are in the folder simulation. Experiment: California Housin

2 Jun 21, 2022
Pytorch implementation of One-Shot Affordance Detection

One-shot Affordance Detection PyTorch implementation of our one-shot affordance detection models. This repository contains PyTorch evaluation code, tr

46 Dec 12, 2022
Code for paper " AdderNet: Do We Really Need Multiplications in Deep Learning?"

AdderNet: Do We Really Need Multiplications in Deep Learning? This code is a demo of CVPR 2020 paper AdderNet: Do We Really Need Multiplications in De

HUAWEI Noah's Ark Lab 915 Jan 01, 2023
Main repository for the HackBio'2021 Virtual Internship Experience for #Team-Greider ❤️

Hello 🤟 #Team-Greider The team of 20 people for HackBio'2021 Virtual Bioinformatics Internship 💝 🖨️ 👨‍💻 HackBio: https://thehackbio.com 💬 Ask us

Siddhant Sharma 7 Oct 20, 2022
Implementation of parameterized soft-exponential activation function.

Soft-Exponential-Activation-Function: Implementation of parameterized soft-exponential activation function. In this implementation, the parameters are

Shuvrajeet Das 1 Feb 23, 2022
Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch

Next Word Prediction Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch 🎬 Project Demo ✔ Application is hosted on Streamlit. You can see t

Vivek7 3 Aug 26, 2022