A complete speech segmentation system using Kaldi and x-vectors for voice activity detection (VAD) and speaker diarisation.

Overview

bbc-speech-segmenter: Voice Activity Detection & Speaker Diarization

A complete speech segmentation system using Kaldi and x-vectors for voice activity detection (VAD) and speaker diarisation.

The x-vector-vad system is described in the paper; Ogura, M. & Haynes, M. (2021) X-vector-vad for Multi-genre Broadcast Speech-to-text. The paper has been submitted to 2021 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU) and is currently under review as of June 2021.

Quickstart

$ docker pull bbcrd/bbc-speech-segmenter

# Test

$ docker run -w /wrk -v `pwd`:/wrk bbcrd/bbc-speech-segmenter ./test.sh

# Segmentation help

$ docker run bbcrd/bbc-speech-segmenter ./run-segmentation.sh --help
usage: run-segmentation.sh [options] input.wav input.stm output-dir

options:
  --nj NUM                 Maximum number of CPU cores to use
  --stage STAGE            Start from this stage
  --cluster-threshold THR  Cluster stopping criteria. Default: -0.3
  --vad-threshold THR      Xvector classifier threshold. Lower the number the
                           more speech segments shall be returned at the
                           expense of accuracy. Default: 0.2
  --vad-method             Filter segments on an individual or segment basis.
                           Default: individual
  --no-vad                 Skip xvector vad stages. Default: false
  --help                   Print this message

# Run segmentation (VAD + diarisation), results are in output-dir/diarize.stm

$ docker run -v `pwd`:/data bbcrd/bbc-speech-segmenter \
  ./run-segmentation.sh /data/audio.wav /data/audio.stm /data/output-dir

$ cat output-dir/diarize.stm
audio 0 audio_S00004 3.750 10.125 <speech>
audio 0 audio_S00003 10.125 13.687 <speech>
audio 0 audio_S00004 13.688 16.313 <speech>
...

# Train x-vector classifier

$ docker run -w /wrk/recipe -v `pwd`:/wrk bbcrd/bbc-speech-segmenter \
  local/xvector_utils.py data/bbc-vad-train/reference.stm            \
  data/bbc-vad-train/xvectors.ark new_model.pkl

# Evaluate x-vector classifier

$ docker run -w /wrk/recipe -v `pwd`:/wrk bbcrd/bbc-speech-segmenter \
  local/xvector_utils.py evaluate data/bbc-vad-eval/reference.stm    \
  data/bbc-vad-eval/xvectors.ark model/xvector-classifier.pkl

Audio & STM file format

In order to run the segmentation script you need your audio in 16Khz Mono WAV format. You also need an STM file describing the segments you want to apply voice activity detection and speaker diarization to.

For more information on the STM file format see XVECTOR_UTILS.md.

# Convert audio file to 16Khz mono wav

$ ffmpeg audio.mp3 -vn -ac 1 -ar 16000 audio.wav

# Create STM file for input

$ DURATION=$(ffprobe -i audio.wav -show_entries format=duration -v quiet -of csv="p=0")
$ DURATION=$(printf "%0.2f\n" $DURATION)

$ FILENAME=$(basename audio.wav)

$ echo "${FILENAME%.*} 0 ${FILENAME%.*} 0.00 $DURATION <label> _" > audio.stm

$ cat audio.stm
audio 0 audio 0.00 60.00 <label> _

Use Docker image to run code in local checkout

# Bulid Docker image

$ docker build -t bbc-speech-segmenter .

# Spin up a Docker container in an interactive mode

$ docker run -it -v `pwd`:/wrk bbc-speech-segmenter /bin/bash

# Inside a Docker container

$ cd /wrk/

# Run test

$ ./test.sh
All checks passed

Training and evaluation

X-vector utility

xvector_utils.py can be used to train and evaluate x-vector classifier, as well as o extract and visualize x-vectors. For more detailed information, see XVECTOR_UTILS.md.

The documentation also gives details on file formats such as ARK, SCP or STM, which are required to use this tool.

Run x-vector VAD training

Two files are required for x-vector-vad training:

  • Reference STM file
  • X-vectors ARK file

For example, from inside the Docker container:

$ cd /wrk/recipe

$ python3 local/xvector_utils.py train \
  data/bbc-vad-train/reference.stm     \
  data/bbc-vad-train/xvectors.ark      \
  new_model.pkl

The model will be saved as new_model.pkl.

Run x-vector VAD evaluation

Three files are needed in order to run VAD evaluation:

  • Reference STM file
  • X-vectors ARK file
  • x-vector-vad classifier model

For example, from inside the Docker container:

$ cd /wrk/recipe

$ python3 local/xvector_utils.py evaluate \
  data/bbc-vad-eval/reference.stm        \
  data/bbc-vad-eval/xvectors.ark         \
  model/xvector-classifier.pkl

WebRTC baseline

The code for the baseline WebRTC system referenced in the paper is available in the directory recipe/baselines/denoising_DIHARD18_webrtc.

Request access to bbc-vad-train

Due to size restriction, only bbc-vad-eval is included in the repository. If you'd like access to bbc-vad-train, please contact Matt Haynes.

Authors

Owner
BBC
Open source code used on public facing services, internal services and educational resources.
BBC
Open source code for Paper "A Co-Interactive Transformer for Joint Slot Filling and Intent Detection"

A Co-Interactive Transformer for Joint Slot Filling and Intent Detection This repository contains the PyTorch implementation of the paper: A Co-Intera

67 Dec 05, 2022
An 16kHz implementation of HiFi-GAN for soft-vc.

HiFi-GAN An 16kHz implementation of HiFi-GAN for soft-vc. Relevant links: Official HiFi-GAN repo HiFi-GAN paper Soft-VC repo Soft-VC paper Example Usa

Benjamin van Niekerk 42 Dec 27, 2022
Testbed of AI Systems Quality Management

qunomon Description A testbed for testing and managing AI system qualities. Demo Sorry. Not deployment public server at alpha version. Requirement Ins

AIST AIRC 15 Nov 27, 2021
Playing around with FastAPI and streamlit to create a YoloV5 object detector

FastAPI-Streamlit-based-YoloV5-detector Playing around with FastAPI and streamlit to create a YoloV5 object detector It turns out that a User Interfac

2 Jan 20, 2022
TextureGAN in Pytorch

TextureGAN This code is our PyTorch implementation of TextureGAN [Project] [Arxiv] TextureGAN is a generative adversarial network conditioned on sketc

Patsorn 147 Dec 14, 2022
Expressive Power of Invariant and Equivaraint Graph Neural Networks (ICLR 2021)

Expressive Power of Invariant and Equivaraint Graph Neural Networks In this repository, we show how to use powerful GNN (2-FGNN) to solve a graph alig

Marc Lelarge 36 Dec 12, 2022
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models This repo contains code for DDPM training. Based on Denoising Diffusion Probabilistic Models, Improved Denois

Alexander Markov 7 Dec 15, 2022
2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

Aigege 8 Mar 31, 2022
Unofficial pytorch implementation of 'Image Inpainting for Irregular Holes Using Partial Convolutions'

pytorch-inpainting-with-partial-conv Official implementation is released by the authors. Note that this is an ongoing re-implementation and I cannot f

Naoto Inoue 525 Jan 01, 2023
Network Compression via Central Filter

Network Compression via Central Filter Environments The code has been tested in the following environments: Python 3.8 PyTorch 1.8.1 cuda 10.2 torchsu

2 May 12, 2022
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)

English | 简体中文 Welcome to the PaddlePaddle GitHub. PaddlePaddle, as the only independent R&D deep learning platform in China, has been officially open

19.4k Jan 04, 2023
Code for reproducing experiments in "Improved Training of Wasserstein GANs"

Improved Training of Wasserstein GANs Code for reproducing experiments in "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, Tensor

Ishaan Gulrajani 2.2k Jan 01, 2023
Software & Hardware to do multi color printing with Sharpies

3D Print Colorizer is a combination of 3D printed parts and a Cura plugin which allows anyone with an Ender 3 like 3D printer to produce multi colored

343 Jan 06, 2023
[ICLR 2022] Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics

CPDeform Code and data for paper Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics at ICLR 2022 (Spotlight). @InProceed

(Lester) Sizhe Li 29 Nov 29, 2022
Cross-modal Deep Face Normals with Deactivable Skip Connections

Cross-modal Deep Face Normals with Deactivable Skip Connections Victoria Fernández Abrevaya*, Adnane Boukhayma*, Philip H. S. Torr, Edmond Boyer (*Equ

72 Nov 27, 2022
Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation

Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation The code of: Cross-Image Region Mining with Region Proto

LiuWeide 16 Nov 26, 2022
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
MiniSom is a minimalistic implementation of the Self Organizing Maps

MiniSom Self Organizing Maps MiniSom is a minimalistic and Numpy based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial N

Giuseppe Vettigli 1.2k Jan 03, 2023
Implementation for paper "Towards the Generalization of Contrastive Self-Supervised Learning"

Contrastive Self-Supervised Learning on CIFAR-10 Paper "Towards the Generalization of Contrastive Self-Supervised Learning", Weiran Huang, Mingyang Yi

Weiran Huang 13 Nov 30, 2022
StarGAN v2 - Official PyTorch Implementation (CVPR 2020)

StarGAN v2 - Official PyTorch Implementation StarGAN v2: Diverse Image Synthesis for Multiple Domains Yunjey Choi*, Youngjung Uh*, Jaejun Yoo*, Jung-W

Clova AI Research 3.1k Jan 09, 2023