1st Solution For ICDAR 2021 Competition on Mathematical Formula Detection

Overview

About The Project

This project releases our 1st place solution on ICDAR 2021 Competition on Mathematical Formula Detection. We implement our solution based on MMDetection, which is an open source object detection toolbox based on PyTorch. You can click here for more details about this competition.

Method Description

We built our approach on FCOS, A simple and strong anchor-free object detector, with ResNeSt as our backbone, to detect embedded and isolated formulas. We employed ATSS as our sampling strategy instead of random sampling to eliminate the effects of sample imbalance. Moreover, we observed and revealed the influence of different FPN levels on the detection result. Generalized Focal Loss is adopted to our loss. Finally, with a series of useful tricks and model ensembles, our method was ranked 1st in the MFD task.

Random Sampling(left) ATSS(right) Random Sampling(left) ATSS(right)

Getting Start

Prerequisites

  • Linux or macOS (Windows is in experimental support)
  • Python 3.6+
  • PyTorch 1.3+
  • CUDA 9.2+ (If you build PyTorch from source, CUDA 9.0 is also compatible)
  • GCC 5+
  • MMCV

This project is based on MMDetection-v2.7.0, mmcv-full>=1.1.5, <1.3 is needed. Note: You need to run pip uninstall mmcv first if you have mmcv installed. If mmcv and mmcv-full are both installed, there will be ModuleNotFoundError.

Installation

  1. Install PyTorch and torchvision following the official instructions , e.g.,

    pip install pytorch torchvision -c pytorch

    Note: Make sure that your compilation CUDA version and runtime CUDA version match. You can check the supported CUDA version for precompiled packages on the PyTorch website.

    E.g.1 If you have CUDA 10.1 installed under /usr/local/cuda and would like to install PyTorch 1.5, you need to install the prebuilt PyTorch with CUDA 10.1.

    pip install pytorch cudatoolkit=10.1 torchvision -c pytorch

    E.g. 2 If you have CUDA 9.2 installed under /usr/local/cuda and would like to install PyTorch 1.3.1., you need to install the prebuilt PyTorch with CUDA 9.2.

    pip install pytorch=1.3.1 cudatoolkit=9.2 torchvision=0.4.2 -c pytorch

    If you build PyTorch from source instead of installing the prebuilt pacakge, you can use more CUDA versions such as 9.0.

  2. Install mmcv-full, we recommend you to install the pre-build package as below.

    pip install mmcv-full==latest+torch1.6.0+cu101 -f https://download.openmmlab.com/mmcv/dist/index.html

    See here for different versions of MMCV compatible to different PyTorch and CUDA versions. Optionally you can choose to compile mmcv from source by the following command

    git clone https://github.com/open-mmlab/mmcv.git
    cd mmcv
    MMCV_WITH_OPS=1 pip install -e .  # package mmcv-full will be installed after this step
    cd ..

    Or directly run

    pip install mmcv-full
  3. Install build requirements and then compile MMDetection.

    pip install -r requirements.txt
    pip install tensorboard
    pip install ensemble-boxes
    pip install -v -e .  # or "python setup.py develop"

Usage

Data Preparation

Firstly, Firstly, you need to put the image files and the GT files into two separate folders as below.

Tr01
├── gt
│   ├── 0001125-color_page02.txt
│   ├── 0001125-color_page05.txt
│   ├── ...
│   └── 0304067-color_page08.txt
├── img
    ├── 0001125-page02.jpg
    ├── 0001125-page05.jpg
    ├── ...
    └── 0304067-page08.jpg

Secondly, run data_preprocess.py to get coco format label. Remember to change 'img_path', 'txt_path', 'dst_path' and 'train_path' to your own path.

python ./tools/data_preprocess.py

The new structure of data folder will become,

Tr01
├── gt
│   ├── 0001125-color_page02.txt
│   ├── 0001125-color_page05.txt
│   ├── ...
│   └── 0304067-color_page08.txt
│
├── gt_icdar
│   ├── 0001125-color_page02.txt
│   ├── 0001125-color_page05.txt
│   ├── ...
│   └── 0304067-color_page08.txt
│   
├── img
│   ├── 0001125-page02.jpg
│   ├── 0001125-page05.jpg
│   ├── ...
│   └── 0304067-page08.jpg
│
└── train_coco.json

Finally, change 'data_root' in ./configs/base/datasets/formula_detection.py to your path.

Train

  1. train with single gpu on ResNeSt50

    python tools/train.py configs/gfl/gfl_s50_fpn_2x_coco.py --gpus 1 --work-dir ${Your Dir}
  2. train with 8 gpus on ResNeSt101

    ./tools/dist_train.sh configs/gfl/gfl_s101_fpn_2x_coco.py 8 --work-dir ${Your Dir}

Inference

Run tools/test_formula.py

python tools/test_formula.py configs/gfl/gfl_s101_fpn_2x_coco.py ${checkpoint path} 

It will generate a 'result' file at the same level with work-dir in default. You can specify the output path of the result file in line 231.

Model Ensemble

Specify the paths of the results in tools/model_fusion_test.py, and run

python tools/model_fusion_test.py

Evaluation

evaluate.py is the officially provided evaluation tool. Run

python evaluate.py ${GT_DIR} ${CSV_Pred_File}

Note: GT_DIR is the path of the original data folder which contains both the image and the GT files. CSV_Pred_File is the path of the final prediction csv file.

Result

Train on Tr00, Tr01, Va00 and Va01, and test on Ts01. Some results are as follows, F1-score

Method embedded isolated total
ResNeSt50-DCN 95.67 97.67 96.03
ResNeSt101-DCN 96.11 97.75 96.41

Our final result, that was ranked 1st place in the competition, was obtained by fusing two Resnest101+GFL models trained with two different random seeds and all labeled data. The final ranking can be seen in our technical report.

License

This project is licensed under the MIT License. See LICENSE for more details.

Citations

@article{zhong20211st,
  title={1st Place Solution for ICDAR 2021 Competition on Mathematical Formula Detection},
  author={Zhong, Yuxiang and Qi, Xianbiao and Li, Shanjun and Gu, Dengyi and Chen, Yihao and Ning, Peiyang and Xiao, Rong},
  journal={arXiv preprint arXiv:2107.05534},
  year={2021}
}
@article{GFLli2020generalized,
  title={Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection},
  author={Li, Xiang and Wang, Wenhai and Wu, Lijun and Chen, Shuo and Hu, Xiaolin and Li, Jun and Tang, Jinhui and Yang, Jian},
  journal={arXiv preprint arXiv:2006.04388},
  year={2020}
}
@inproceedings{ATSSzhang2020bridging,
  title={Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection},
  author={Zhang, Shifeng and Chi, Cheng and Yao, Yongqiang and Lei, Zhen and Li, Stan Z},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={9759--9768},
  year={2020}
}
@inproceedings{FCOStian2019fcos,
  title={Fcos: Fully convolutional one-stage object detection},
  author={Tian, Zhi and Shen, Chunhua and Chen, Hao and He, Tong},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={9627--9636},
  year={2019}
}
@article{solovyev2019weighted,
  title={Weighted boxes fusion: ensembling boxes for object detection models},
  author={Solovyev, Roman and Wang, Weimin and Gabruseva, Tatiana},
  journal={arXiv preprint arXiv:1910.13302},
  year={2019}
}
@article{ResNestzhang2020resnest,
  title={Resnest: Split-attention networks},
  author={Zhang, Hang and Wu, Chongruo and Zhang, Zhongyue and Zhu, Yi and Lin, Haibin and Zhang, Zhi and Sun, Yue and He, Tong and Mueller, Jonas and Manmatha, R and others},
  journal={arXiv preprint arXiv:2004.08955},
  year={2020}
}
@article{MMDetectionchen2019mmdetection,
  title={MMDetection: Open mmlab detection toolbox and benchmark},
  author={Chen, Kai and Wang, Jiaqi and Pang, Jiangmiao and Cao, Yuhang and Xiong, Yu and Li, Xiaoxiao and Sun, Shuyang and Feng, Wansen and Liu, Ziwei and Xu, Jiarui and others},
  journal={arXiv preprint arXiv:1906.07155},
  year={2019}
}

Acknowledgements

Owner
yuxzho
yuxzho
A keras-based real-time model for medical image segmentation (CFPNet-M)

CFPNet-M: A Light-Weight Encoder-Decoder Based Network for Multimodal Biomedical Image Real-Time Segmentation This repository contains the implementat

268 Nov 27, 2022
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023
Personal implementation of paper "Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval"

Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval This repo provides personal implementation of paper Approximate Ne

John 8 Oct 07, 2022
E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

11 Nov 08, 2022
Code and datasets for the paper "Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction" (RA-L, 2021)

Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction This is the code for the paper Combining E

Robotics and Perception Group 69 Dec 26, 2022
Neural style transfer in PyTorch.

style-transfer-pytorch An implementation of neural style transfer (A Neural Algorithm of Artistic Style) in PyTorch, supporting CPUs and Nvidia GPUs.

Katherine Crowson 395 Jan 06, 2023
HDMapNet: A Local Semantic Map Learning and Evaluation Framework

HDMapNet_devkit Devkit for HDMapNet. HDMapNet: A Local Semantic Map Learning and Evaluation Framework Qi Li, Yue Wang, Yilun Wang, Hang Zhao [Paper] [

Tsinghua MARS Lab 421 Jan 04, 2023
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

基于 bert4keras 的一个baseline 不作任何 数据trick 单模 线上 最高可到 0.7891 # 基础 版 train.py 0.7769 # transformer 各层 cls concat 明神的trick https://xv44586.git

孙永松 7 Dec 28, 2021
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [PaddlePaddle Implementation] Homepage of paper: Paint Transformer: Fee

442 Dec 16, 2022
Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Beijing ColorfulClouds Technology Co.,Ltd. 16 Aug 07, 2022
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Nikolas Petrou 1 Jan 13, 2022
patchmatch和patchmatchstereo算法的python实现

patchmatch patchmatch以及patchmatchstereo算法的python版实现 patchmatch参考 github patchmatchstereo参考李迎松博士的c++版代码 由于patchmatchstereo没有做任何优化,并且是python的代码,主要是方便解析算

Sanders Bao 11 Dec 02, 2022
RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch

RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent

Phil Wang 556 Jan 04, 2023
E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation E2EC: An End-to-End Contour-based Method for High-Quality H

zhangtao 146 Dec 29, 2022
Simulation of the solar system using various nummerical methods

solar-system Simulation of the solar system using various nummerical methods Download the repo Make shure matplotlib, scipy etc. are installed execute

Caspar 7 Jul 15, 2022
A simple AI that will give you si ple task and this is made with python

Crystal-AI A simple AI that will give you si ple task and this is made with python Prerequsites: Python3.6.2 pyttsx3 pip install pyttsx3 pyaudio pip i

CrystalAnd 1 Dec 25, 2021
A few stylization coreML models that I've trained with CreateML

CoreML-StyleTransfer A few stylization coreML models that I've trained with CreateML You can open and use the .mlmodel files in the "models" folder in

Doron Adler 8 Aug 18, 2022
Official code for the CVPR 2022 (oral) paper "Extracting Triangular 3D Models, Materials, and Lighting From Images".

nvdiffrec Joint optimization of topology, materials and lighting from multi-view image observations as described in the paper Extracting Triangular 3D

NVIDIA Research Projects 1.4k Jan 01, 2023
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
A Python package to process & model ChEMBL data.

insilico: A Python package to process & model ChEMBL data. ChEMBL is a manually curated chemical database of bioactive molecules with drug-like proper

Steven Newton 0 Dec 09, 2021