Improving Calibration for Long-Tailed Recognition (CVPR2021)

Overview

MiSLAS

Improving Calibration for Long-Tailed Recognition

Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia

[arXiv] [slide] [BibTeX]


Introduction: This repository provides an implementation for the CVPR 2021 paper: "Improving Calibration for Long-Tailed Recognition" based on LDAM-DRW and Decoupling models. Our study shows, because of the extreme imbalanced composition ratio of each class, networks trained on long-tailed datasets are more miscalibrated and over-confident. MiSLAS is a simple, and efficient two-stage framework for long-tailed recognition, which greatly improves recognition accuracy and markedly relieves over-confidence simultaneously.

Installation

Requirements

  • Python 3.7
  • torchvision 0.4.0
  • Pytorch 1.2.0
  • yacs 0.1.8

Virtual Environment

conda create -n MiSLAS python==3.7
source activate MiSLAS

Install MiSLAS

git clone https://github.com/Jia-Research-Lab/MiSLAS.git
cd MiSLAS
pip install -r requirements.txt

Dataset Preparation

Change the data_path in config/*/*.yaml accordingly.

Training

Stage-1:

To train a model for Stage-1 with mixup, run:

(one GPU for CIFAR-10-LT & CIFAR-100-LT, four GPUs for ImageNet-LT, iNaturalist 2018, and Places-LT)

python train_stage1.py --cfg ./config/DATASETNAME/DATASETNAME_ARCH_stage1_mixup.yaml

DATASETNAME can be selected from cifar10, cifar100, imagenet, ina2018, and places.

ARCH can be resnet32 for cifar10/100, resnet50/101/152 for imagenet, resnet50 for ina2018, and resnet152 for places, respectively.

Stage-2:

To train a model for Stage-2 with one GPU (all the above datasets), run:

python train_stage2.py --cfg ./config/DATASETNAME/DATASETNAME_ARCH_stage2_mislas.yaml resume /path/to/checkpoint/stage1

The saved folder (including logs and checkpoints) is organized as follows.

MiSLAS
├── saved
│   ├── modelname_date
│   │   ├── ckps
│   │   │   ├── current.pth.tar
│   │   │   └── model_best.pth.tar
│   │   └── logs
│   │       └── modelname.txt
│   ...   

Evaluation

To evaluate a trained model, run:

python eval.py --cfg ./config/DATASETNAME/DATASETNAME_ARCH_stage1_mixup.yaml  resume /path/to/checkpoint/stage1
python eval.py --cfg ./config/DATASETNAME/DATASETNAME_ARCH_stage2_mislas.yaml resume /path/to/checkpoint/stage2

Results and Models

1) CIFAR-10-LT and CIFAR-100-LT

  • Stage-1 (mixup):
Dataset Top-1 Accuracy ECE (15 bins) Model
CIFAR-10-LT IF=10 87.6% 11.9% link
CIFAR-10-LT IF=50 78.1% 2.49% link
CIFAR-10-LT IF=100 72.8% 2.14% link
CIFAR-100-LT IF=10 59.1% 5.24% link
CIFAR-100-LT IF=50 45.4% 4.33% link
CIFAR-100-LT IF=100 39.5% 8.82% link
  • Stage-2 (MiSLAS):
Dataset Top-1 Accuracy ECE (15 bins) Model
CIFAR-10-LT IF=10 90.0% 1.20% link
CIFAR-10-LT IF=50 85.7% 2.01% link
CIFAR-10-LT IF=100 82.5% 3.66% link
CIFAR-100-LT IF=10 63.2% 1.73% link
CIFAR-100-LT IF=50 52.3% 2.47% link
CIFAR-100-LT IF=100 47.0% 4.83% link

Note: To obtain better performance, we highly recommend changing the weight decay 2e-4 to 5e-4 on CIFAR-LT.

2) Large-scale Datasets

  • Stage-1 (mixup):
Dataset Arch Top-1 Accuracy ECE (15 bins) Model
ImageNet-LT ResNet-50 45.5% 7.98% link
iNa'2018 ResNet-50 66.9% 5.37% link
Places-LT ResNet-152 29.4% 16.7% link
  • Stage-2 (MiSLAS):
Dataset Arch Top-1 Accuracy ECE (15 bins) Model
ImageNet-LT ResNet-50 52.7% 1.78% link
iNa'2018 ResNet-50 71.6% 7.67% link
Places-LT ResNet-152 40.4% 3.41% link

Citation

Please consider citing MiSLAS in your publications if it helps your research. :)

@inproceedings{zhong2021mislas,
    title={Improving Calibration for Long-Tailed Recognition},
    author={Zhisheng Zhong, Jiequan Cui, Shu Liu, and Jiaya Jia},
    booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year={2021},
}

Contact

If you have any questions about our work, feel free to contact us through email (Zhisheng Zhong: [email protected]) or Github issues.

Owner
DV Lab
Deep Vision Lab
DV Lab
PyTorch Implementation for Deep Metric Learning Pipelines

Easily Extendable Basic Deep Metric Learning Pipeline Karsten Roth ([email 

Karsten Roth 543 Jan 04, 2023
KoCLIP: Korean port of OpenAI CLIP, in Flax

KoCLIP This repository contains code for KoCLIP, a Korean port of OpenAI's CLIP. This project was conducted as part of Hugging Face's Flax/JAX communi

Jake Tae 100 Jan 02, 2023
Pansharpening by convolutional neural networks in the full resolution framework

Z-PNN: Zoom Pansharpening Neural Network Pansharpening by convolutional neural networks in the full resolution framework is a deep learning method for

20 Nov 24, 2022
Python code for loading the Aschaffenburg Pose Dataset.

Aschaffenburg Pose Dataset (APD) This repository contains Python code for loading and filtering the Aschaffenburg Pose Dataset. The dataset itself and

1 Nov 26, 2021
Detection of PCBA defect

Detection_of_PCBA_defect Detection_of_PCBA_defect Use yolov5 to train. $pip install -r requirements.txt Detect.py will detect file(jpg,mp4...) in cu

6 Nov 28, 2022
Convert game ISO and archives to CD CHD for emulation on Linux.

tochd Convert game ISO and archives to CD CHD for emulation. Author: Tuncay D. Source: https://github.com/thingsiplay/tochd Releases: https://github.c

Tuncay 20 Jan 02, 2023
Joint project of the duo Hacker Ninjas

Project Smoothie Společný projekt dua Hacker Ninjas. První pokus o hříčku po třech týdnech učení se programování. Jakub Kolář e:\

Jakub Kolář 2 Jan 07, 2022
Semantic Segmentation in Pytorch

PyTorch Semantic Segmentation Introduction This repository is a PyTorch implementation for semantic segmentation / scene parsing. The code is easy to

Hengshuang Zhao 1.2k Jan 01, 2023
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our new data division is based on COCO2017. We divide the training set into

58 Dec 23, 2022
Implementation of H-UCRL Algorithm

Implementation of H-UCRL Algorithm This repository is an implementation of the H-UCRL algorithm introduced in Curi, S., Berkenkamp, F., & Krause, A. (

Sebastian Curi 25 May 20, 2022
Source code of generalized shuffled linear regression

Generalized-Shuffled-Linear-Regression Code for the ICCV 2021 paper: Generalized Shuffled Linear Regression. Authors: Feiran Li, Kent Fujiwara, Fumio

FEI 7 Oct 26, 2022
Locally cache assets that are normally streamed in POPULATION: ONE

Population One Localizer This is no longer needed as of the build shipped on 03/03/22, thank you bigbox :) Locally cache assets that are normally stre

Ahman Woods 2 Mar 04, 2022
Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR

Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR

Kai Zhang 2k Dec 31, 2022
Implementation of Hierarchical Transformer Memory (HTM) for Pytorch

Hierarchical Transformer Memory (HTM) - Pytorch Implementation of Hierarchical Transformer Memory (HTM) for Pytorch. This Deepmind paper proposes a si

Phil Wang 63 Dec 29, 2022
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022
Face Transformer for Recognition

Face-Transformer This is the code of Face Transformer for Recognition (https://arxiv.org/abs/2103.14803v2). Recently there has been great interests of

Zhong Yaoyao 153 Nov 30, 2022
A deep learning framework for historical document image analysis

DIVA-DAF Description A deep learning framework for historical document image analysis. How to run Install dependencies # clone project git clone https

9 Aug 04, 2022
A Tensorfflow implementation of Attend, Infer, Repeat

Attend, Infer, Repeat: Fast Scene Understanding with Generative Models This is an unofficial Tensorflow implementation of Attend, Infear, Repeat (AIR)

Adam Kosiorek 82 May 27, 2022
Supervised domain-agnostic prediction framework for probabilistic modelling

A supervised domain-agnostic framework that allows for probabilistic modelling, namely the prediction of probability distributions for individual data

The Alan Turing Institute 112 Oct 23, 2022
An official PyTorch implementation of the TKDE paper "Self-Supervised Graph Representation Learning via Topology Transformations".

Self-Supervised Graph Representation Learning via Topology Transformations This repository is the official PyTorch implementation of the following pap

Hsiang Gao 2 Oct 31, 2022