Multi-Content GAN for Few-Shot Font Style Transfer at CVPR 2018

Related tags

Deep LearningMC-GAN
Overview

MC-GAN in PyTorch

This is the implementation of the Multi-Content GAN for Few-Shot Font Style Transfer. The code was written by Samaneh Azadi. If you use this code or our collected font dataset for your research, please cite:

Multi-Content GAN for Few-Shot Font Style Transfer; Samaneh Azadi, Matthew Fisher, Vladimir Kim, Zhaowen Wang, Eli Shechtman, Trevor Darrell, in arXiv, 2017.

Prerequisites:

  • Linux or macOS
  • Python 2.7
  • CPU or NVIDIA GPU + CUDA CuDNN

Getting Started

Installation

  • Install PyTorch and dependencies from http://pytorch.org
  • Install Torch vision from the source.
git clone https://github.com/pytorch/vision
cd vision
python setup.py install
pip install visdom
pip install dominate
pip install scikit-image
  • Clone this repo:
mkdir FontTransfer
cd FontTransfer
git clone https://github.com/azadis/MC-GAN
cd MC-GAN

MC-GAN train/test

  • Download our gray-scale 10K font data set:

./datasets/download_font_dataset.sh Capitals64

../datasets/Capitals64/test_dict/dict.pkl makes observed random glyphs be similar at different test runs on Capitals64 dataset. It is a dictionary with font names as keys and random arrays containing indices from 0 to 26 as their values. Lengths of the arrays are equal to the number of non-observed glyphs in each font.

../datasets/Capitals64/BASE/Code New Roman.0.0.png is a fixed simple font used for training the conditional GAN in the End-to-End model.

./datasets/download_font_dataset.sh public_web_fonts

Given a few letters of font ${DATA} for examples 5 letters {T,O,W,E,R}, training directory ${DATA}/A should contain 5 images each with dimension 64x(64x26)x3 where 5 - 1 = 4 letters are given and the rest are zeroed out. Each image should be saved as ${DATA}_${IND}.png where ${IND} is the index (in [0,26) ) of the letter omitted from the observed set. Training directory ${DATA}/B contains images each with dimension 64x64x3 where only the omitted letter is given. Image names are similar to the ones in ${DATA}/A though. ${DATA}/A/test/${DATA}.png contains all 5 given letters as a 64x(64x26)x3-dimensional image. Structure of the directories for above real-world fonts (including only a few observed letters) is as follows. One can refer to the examples in ../datasets/public_web_fonts for more information.

../datasets/public_web_fonts
                      └── ${DATA}/
                          ├── A/
                          │  ├──train/${DATA}_${IND}.png
                          │  └──test/${DATA}.png
                          └── B/
                             ├──train/${DATA}_${IND}.png
                             └──test/${DATA}.png
  • (Optional) Download our synthetic color gradient font data set:

./datasets/download_font_dataset.sh Capitals_colorGrad64
  • Train Glyph Network:
./scripts/train_cGAN.sh Capitals64

Model parameters will be saved under ./checkpoints/GlyphNet_pretrain.

  • Test Glyph Network after specific numbers of epochs (e.g. 400 by setting EPOCH=400 in ./scripts/test_cGAN.sh):
./scripts/test_cGAN.sh Capitals64
  • (Optional) View the generated images (e.g. after 400 epochs):
cd ./results/GlyphNet_pretrain/test_400/

If you are running the code in your local machine, open index.html. If you are running remotely via ssh, on your remote machine run:

python -m SimpleHTTPServer 8881

Then on your local machine, start an SSH tunnel: ssh -N -f -L localhost:8881:localhost:8881 [email protected]_host Now open your browser on the local machine and type in the address bar:

localhost:8881
  • (Optional) Plot loss functions values during training, from MC-GAN directory:
python util/plot_loss.py --logRoot ./checkpoints/GlyphNet_pretrain/
  • Train End-to-End network (e.g. on DATA=ft37_1): You can train Glyph Network following instructions above or download our pre-trained model by running:
./pretrained_models/download_cGAN_models.sh

Now, you can train the full model:

./scripts/train_StackGAN.sh ${DATA}
  • Test End-to-End network:
./scripts/test_StackGAN.sh ${DATA}

results will be saved under ./results/${DATA}_MCGAN_train.

  • (Optional) Make a video from your results in different training epochs:

First, train your model and save model weights in every epoch by setting opt.save_epoch_freq=1 in scripts/train_StackGAN.sh. Then test in different epochs and make the video by:

./scripts/make_video.sh ${DATA}

Follow the previous steps to visualize generated images and training curves where you replace GlyphNet_train with ${DATA}_StackGAN_train.

Training/test Details

  • Flags: see options/train_options.py, options/base_options.py and options/test_options.py for explanations on each flag.

  • Baselines: if you want to use this code to get results of Image Translation baseline or want to try tiling glyphs rather than stacking, refer to the end of scripts/train_cGAN.sh . If you only want to train OrnaNet on top of clean glyphs, refer to the end of scripts/train_StackGAN.sh.

  • Image Dimension: We have tried this network only on 64x64 images of letters. We do not scale and crop images since we set both opt.FineSize and opt.LoadSize to 64.

Citation

If you use this code or the provided dataset for your research, please cite our paper:

@inproceedings{azadi2018multi,
  title={Multi-content gan for few-shot font style transfer},
  author={Azadi, Samaneh and Fisher, Matthew and Kim, Vladimir and Wang, Zhaowen and Shechtman, Eli and Darrell, Trevor},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  volume={11},
  pages={13},
  year={2018}
}

Acknowledgements

We thank Elena Sizikova for downloading all fonts used in the 10K font data set.

Code is inspired by pytorch-CycleGAN-and-pix2pix.

Owner
Samaneh Azadi
CS PhD student at UC Berkeley
Samaneh Azadi
ivadomed is an integrated framework for medical image analysis with deep learning.

Repository on the collaborative IVADO medical imaging project between the Mila and NeuroPoly labs.

144 Dec 19, 2022
Create time-series datacubes for supervised machine learning with ICEYE SAR images.

ICEcube is a Python library intended to help organize SAR images and annotations for supervised machine learning applications. The library generates m

ICEYE Ltd 65 Jan 03, 2023
A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

Segnet is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This is implementation of http://arxiv.org/pdf/15

Pradyumna Reddy Chinthala 190 Dec 15, 2022
Node for thenewboston digital currency network.

Project setup For project setup see INSTALL.rst Community Join the community to stay updated on the most recent developments, project roadmaps, and ra

thenewboston 27 Jul 08, 2022
Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)

Introduction Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper Song Park1

Clova AI Research 97 Dec 23, 2022
Official PyTorch implementation of the paper "TEMOS: Generating diverse human motions from textual descriptions"

TEMOS: TExt to MOtionS Generating diverse human motions from textual descriptions Description Official PyTorch implementation of the paper "TEMOS: Gen

Mathis Petrovich 187 Dec 27, 2022
Unified tracking framework with a single appearance model

Paper: Do different tracking tasks require different appearance model? [ArXiv] (comming soon) [Project Page] (comming soon) UniTrack is a simple and U

ZhongdaoWang 300 Dec 24, 2022
aka "Bayesian Methods for Hackers": An introduction to Bayesian methods + probabilistic programming with a computation/understanding-first, mathematics-second point of view. All in pure Python ;)

Bayesian Methods for Hackers Using Python and PyMC The Bayesian method is the natural approach to inference, yet it is hidden from readers behind chap

Cameron Davidson-Pilon 25.1k Jan 02, 2023
Speech Recognition using DeepSpeech2.

deepspeech.pytorch Implementation of DeepSpeech2 for PyTorch using PyTorch Lightning. The repo supports training/testing and inference using the DeepS

Sean Naren 2k Jan 04, 2023
Code repository for the work "Multi-Domain Incremental Learning for Semantic Segmentation", accepted at WACV 2022

Multi-Domain Incremental Learning for Semantic Segmentation This is the Pytorch implementation of our work "Multi-Domain Incremental Learning for Sema

Pgxo20 24 Jan 02, 2023
Cross-Task Consistency Learning Framework for Multi-Task Learning

Cross-Task Consistency Learning Framework for Multi-Task Learning Tested on numpy(v1.19.1) opencv-python(v4.4.0.42) torch(v1.7.0) torchvision(v0.8.0)

Aki Nakano 2 Jan 08, 2022
Tensor-based approaches for fMRI classification

tensor-fmri Using tensor-based approaches to classify fMRI data from StarPLUS. Citation If you use any code in this repository, please cite the follow

4 Sep 07, 2022
Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks.

Heterogeneous Graph Benchmark Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks. Roadmap We organize our repo by task, and on

THUDM 176 Dec 17, 2022
Social Distancing Detector

Computer vision has opened up a lot of opportunities to explore into AI domain that were earlier highly limited. Here is an application of haarcascade classifier and OpenCV to develop a social distan

Ashish Pandey 2 Jul 18, 2022
Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention

cosFormer Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention Update log 2022/2/28 Add core code License This

120 Dec 15, 2022
A framework for Quantification written in Python

QuaPy QuaPy is an open source framework for quantification (a.k.a. supervised prevalence estimation, or learning to quantify) written in Python. QuaPy

41 Dec 14, 2022
Self-Supervised Pillar Motion Learning for Autonomous Driving (CVPR 2021)

Self-Supervised Pillar Motion Learning for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Self-Supervised Pillar Motion Learning for Autono

QCraft 101 Dec 05, 2022
Segmentation vgg16 fcn - cityscapes

VGGSegmentation Segmentation vgg16 fcn - cityscapes Priprema skupa skripta prepare_dataset_downsampled.py Iz slika cityscapesa izrezuje haubu automobi

6 Oct 24, 2020
The missing CMake project initializer

cmake-init - The missing CMake project initializer Opinionated CMake project initializer to generate CMake projects that are FetchContent ready, separ

1k Jan 01, 2023
📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓

A collection of ready-to-run Python* notebooks for learning and experimenting with OpenVINO developer tools. The notebooks are meant to provide an introduction to OpenVINO basics and teach developers

OpenVINO Toolkit 840 Jan 03, 2023