Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

Overview

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization

This is an official implementation in PyTorch of AFSD. Our paper is available at https://arxiv.org/abs/2103.13137

Updates

  • (May, 2021) We released AFSD training and inference code for THUMOS14 dataset.
  • (February, 2021) AFSD is accepted by CVPR2021.

Abstract

Temporal action localization is an important yet challenging task in video understanding. Typically, such a task aims at inferring both the action category and localization of the start and end frame for each action instance in a long, untrimmed video. While most current models achieve good results by using pre-defined anchors and numerous actionness, such methods could be bothered with both large number of outputs and heavy tuning of locations and sizes corresponding to different anchors. Instead, anchor-free methods is lighter, getting rid of redundant hyper-parameters, but gains few attention. In this paper, we propose the first purely anchor-free temporal localization method, which is both efficient and effective. Our model includes (i) an end-to-end trainable basic predictor, (ii) a saliency-based refinement module to gather more valuable boundary features for each proposal with a novel boundary pooling, and (iii) several consistency constraints to make sure our model can find the accurate boundary given arbitrary proposals. Extensive experiments show that our method beats all anchor-based and actionness-guided methods with a remarkable margin on THUMOS14, achieving state-of-the-art results, and comparable ones on ActivityNet v1.3.

Summary

  • First purely anchor-free framework for temporal action detection task.
  • Fully end-to-end method using frames as input rather then features.
  • Saliency-based refinement module to gather more valuable boundary features.
  • Boundary consistency learning to make sure our model can find the accurate boundary.

Performance

Getting Started

Environment

  • Python 3.7
  • PyTorch == 1.4.0 (Please make sure your pytorch version is 1.4)
  • NVIDIA GPU

Setup

pip3 install -r requirements.txt
python3 setup.py develop

Data Preparation

  • THUMOS14 RGB data:
  1. Download post-processed RGB npy data (13.7GB): [Weiyun]
  2. Unzip the RGB npy data to ./datasets/thumos14/validation_npy/ and ./datasets/thumos14/test_npy/
  • THUMOS14 flow data:
  1. Because it costs more time to generate flow data for THUMOS14, to make easy to run flow model, we provide the post-processed flow data in Google Drive and Weiyun (3.4GB): [Google Drive], [Weiyun]
  2. Unzip the flow npy data to ./datasets/thumos14/validation_flow_npy/ and ./datasets/thumos14/test_flow_npy/

If you want to generate npy data by yourself, please refer to the following guidelines:

  • RGB data generation manually:
  1. To construct THUMOS14 RGB npy inputs, please download the THUMOS14 training and testing videos.
    Training videos: https://storage.googleapis.com/thumos14_files/TH14_validation_set_mp4.zip
    Testing videos: https://storage.googleapis.com/thumos14_files/TH14_Test_set_mp4.zip
    (unzip password is THUMOS14_REGISTERED)
  2. Move the training videos to ./datasets/thumos14/validation/ and the testing videos to ./datasets/thumos14/test/
  3. Run the data processing script: python3 AFSD/common/video2npy.py
  • Flow data generation manually:
  1. If you should generate flow data manually, firstly install the denseflow.
  2. Prepare the post-processed RGB data.
  3. Check and run the script: python3 AFSD/common/gen_denseflow_npy.py

Inference

We provide the pretrained models contain I3D backbone model and final RGB and flow models for THUMOS14 dataset: [Google Drive], [Weiyun]

# run RGB model
python3 AFSD/thumos14/test.py configs/thumos14.yaml --checkpoint_path=models/thumos14/checkpoint-15.ckpt --output_json=thumos14_rgb.json

# run flow model
python3 AFSD/thumos14/test.py configs/thumos14_flow.yaml --checkpoint_path=models/thumos14_flow/checkpoint-16.ckpt --output_json=thumos14_flow.json

# run fusion (RGB + flow) model
python3 AFSD/thumos14/test.py configs/thumos14.yaml --fusion --output_json=thumos14_fusion.json

Evaluation

The output json results of pretrained model can be downloaded from: [Google Drive], [Weiyun]

# evaluate THUMOS14 fusion result as example
python3 eval.py output/thumos14_fusion.json

mAP at tIoU 0.3 is 0.6728296149479254
mAP at tIoU 0.4 is 0.6242590551201842
mAP at tIoU 0.5 is 0.5546668739091394
mAP at tIoU 0.6 is 0.4374840824921885
mAP at tIoU 0.7 is 0.3110112542745055

Training

# train the RGB model
python3 AFSD/thumos14/train.py configs/thumos14.yaml --lw=10 --cw=1 --piou=0.5

# train the flow model
python3 AFSD/thumos14/train.py configs/thumos14_flow.yaml --lw=10 --cw=1 --piou=0.5

Citation

If you find this project useful for your research, please use the following BibTeX entry.

@inproceedings{lin2021afsd,
  title={Learning Salient Boundary Feature for Anchor-free Temporal Action Localization},
  author={Chuming Lin*, Chengming Xu*, Donghao Luo, Yabiao Wang, Ying Tai, Chengjie Wang, Jilin Li, Feiyue Huang, Yanwei Fu},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2021}
}
Owner
Tencent YouTu Research
Tencent YouTu Research
A fuzzing framework for SMT solvers

yinyang A fuzzing framework for SMT solvers. Given a set of seed SMT formulas, yinyang generates mutant formulas to stress-test SMT solvers. yinyang c

Project Yin-Yang for SMT Solver Testing 145 Jan 04, 2023
TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction

TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction TSDF++ is a novel multi-object TSDF formulation that can encode mult

ETHZ ASL 130 Dec 29, 2022
Code for: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification Prerequisite PyTorch = 1.2.0 Python3 torch

16 Dec 14, 2022
A little software to generate and save Julia or Mandelbrot's Fractals.

Julia-Mandelbrot-s-Fractals A little software to generate and save Julia or Mandelbrot's Fractals. Dependencies : Python 3.7 or more. (Also possible t

Olivier 0 Jul 09, 2022
Stock-Prediction - prediction of stock market movements using sentiment analysis and deep learning.

Stock-Prediction- In this project, we aim to enhance the prediction of stock market movements using sentiment analysis and deep learning. We divide th

5 Jan 25, 2022
Source code for ZePHyR: Zero-shot Pose Hypothesis Rating @ ICRA 2021

ZePHyR: Zero-shot Pose Hypothesis Rating ZePHyR is a zero-shot 6D object pose estimation pipeline. The core is a learned scoring function that compare

R-Pad - Robots Perceiving and Doing 18 Aug 22, 2022
Layer 7 DDoS Panel with Cloudflare Bypass ( UAM, CAPTCHA, BFM, etc.. )

Blood Deluxe DDoS DDoS Attack Panel includes CloudFlare Bypass (UAM, CAPTCHA, BFM, etc..)(It works intermittently. Working on it) Don't attack any web

272 Nov 01, 2022
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex

139 Jan 01, 2023
Dataset and Source code of paper 'Enhancing Keyphrase Extraction from Academic Articles with their Reference Information'.

Enhancing Keyphrase Extraction from Academic Articles with their Reference Information Overview Dataset and code for paper "Enhancing Keyphrase Extrac

15 Nov 24, 2022
Our CIKM21 Paper "Incorporating Query Reformulating Behavior into Web Search Evaluation"

Reformulation-Aware-Metrics Introduction This codebase contains source-code of the Python-based implementation of our CIKM 2021 paper. Chen, Jia, et a

xuanyuan14 5 Mar 05, 2022
Repository for MeshTalk supplemental material and code once the (already approved) 16 GHS captures our lab will make publicly available are released.

meshtalk This repository contains code to run MeshTalk for face animation from audio. If you use MeshTalk, please cite @inproceedings{richard2021mesht

Meta Research 221 Jan 06, 2023
Spherical Confidence Learning for Face Recognition, accepted to CVPR2021.

Sphere Confidence Face (SCF) This repository contains the PyTorch implementation of Sphere Confidence Face (SCF) proposed in the CVPR2021 paper: Shen

Maths 70 Dec 09, 2022
Code for CVPR2021 paper 'Where and What? Examining Interpretable Disentangled Representations'.

PS-SC GAN This repository contains the main code for training a PS-SC GAN (a GAN implemented with the Perceptual Simplicity and Spatial Constriction c

Xinqi/Steven Zhu 40 Dec 16, 2022
Final project for Intro to CS class.

Financial Analysis Web App https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py 1. Project Description This project is a technical a

Mayur Khanna 1 Dec 10, 2021
PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

15 Nov 18, 2022
Game Agent Framework. Helping you create AIs / Bots that learn to play any game you own!

Serpent.AI - Game Agent Framework (Python) Update: Revival (May 2020) Development work has resumed on the framework with the aim of bringing it into 2

Serpent.AI 6.4k Jan 05, 2023
Deep Learning as a Cloud API Service.

Deep API Deep Learning as Cloud APIs. This project provides pre-trained deep learning models as a cloud API service. A web interface is available as w

Wu Han 4 Jan 06, 2023
A basic implementation of Layer-wise Relevance Propagation (LRP) in PyTorch.

Layer-wise Relevance Propagation (LRP) in PyTorch Basic unsupervised implementation of Layer-wise Relevance Propagation (Bach et al., Montavon et al.)

Kai Fabi 28 Dec 26, 2022
Deep-Learning-Image-Captioning - Implementing convolutional and recurrent neural networks in Keras to generate sentence descriptions of images

Deep Learning - Image Captioning with Convolutional and Recurrent Neural Nets ========================================================================

23 Apr 06, 2022
Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers.

Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers. It contains purchases, recurring

Ayodeji Yekeen 1 Jan 01, 2022