Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

Overview

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization

This is an official implementation in PyTorch of AFSD. Our paper is available at https://arxiv.org/abs/2103.13137

Updates

  • (May, 2021) We released AFSD training and inference code for THUMOS14 dataset.
  • (February, 2021) AFSD is accepted by CVPR2021.

Abstract

Temporal action localization is an important yet challenging task in video understanding. Typically, such a task aims at inferring both the action category and localization of the start and end frame for each action instance in a long, untrimmed video. While most current models achieve good results by using pre-defined anchors and numerous actionness, such methods could be bothered with both large number of outputs and heavy tuning of locations and sizes corresponding to different anchors. Instead, anchor-free methods is lighter, getting rid of redundant hyper-parameters, but gains few attention. In this paper, we propose the first purely anchor-free temporal localization method, which is both efficient and effective. Our model includes (i) an end-to-end trainable basic predictor, (ii) a saliency-based refinement module to gather more valuable boundary features for each proposal with a novel boundary pooling, and (iii) several consistency constraints to make sure our model can find the accurate boundary given arbitrary proposals. Extensive experiments show that our method beats all anchor-based and actionness-guided methods with a remarkable margin on THUMOS14, achieving state-of-the-art results, and comparable ones on ActivityNet v1.3.

Summary

  • First purely anchor-free framework for temporal action detection task.
  • Fully end-to-end method using frames as input rather then features.
  • Saliency-based refinement module to gather more valuable boundary features.
  • Boundary consistency learning to make sure our model can find the accurate boundary.

Performance

Getting Started

Environment

  • Python 3.7
  • PyTorch == 1.4.0 (Please make sure your pytorch version is 1.4)
  • NVIDIA GPU

Setup

pip3 install -r requirements.txt
python3 setup.py develop

Data Preparation

  • THUMOS14 RGB data:
  1. Download post-processed RGB npy data (13.7GB): [Weiyun]
  2. Unzip the RGB npy data to ./datasets/thumos14/validation_npy/ and ./datasets/thumos14/test_npy/
  • THUMOS14 flow data:
  1. Because it costs more time to generate flow data for THUMOS14, to make easy to run flow model, we provide the post-processed flow data in Google Drive and Weiyun (3.4GB): [Google Drive], [Weiyun]
  2. Unzip the flow npy data to ./datasets/thumos14/validation_flow_npy/ and ./datasets/thumos14/test_flow_npy/

If you want to generate npy data by yourself, please refer to the following guidelines:

  • RGB data generation manually:
  1. To construct THUMOS14 RGB npy inputs, please download the THUMOS14 training and testing videos.
    Training videos: https://storage.googleapis.com/thumos14_files/TH14_validation_set_mp4.zip
    Testing videos: https://storage.googleapis.com/thumos14_files/TH14_Test_set_mp4.zip
    (unzip password is THUMOS14_REGISTERED)
  2. Move the training videos to ./datasets/thumos14/validation/ and the testing videos to ./datasets/thumos14/test/
  3. Run the data processing script: python3 AFSD/common/video2npy.py
  • Flow data generation manually:
  1. If you should generate flow data manually, firstly install the denseflow.
  2. Prepare the post-processed RGB data.
  3. Check and run the script: python3 AFSD/common/gen_denseflow_npy.py

Inference

We provide the pretrained models contain I3D backbone model and final RGB and flow models for THUMOS14 dataset: [Google Drive], [Weiyun]

# run RGB model
python3 AFSD/thumos14/test.py configs/thumos14.yaml --checkpoint_path=models/thumos14/checkpoint-15.ckpt --output_json=thumos14_rgb.json

# run flow model
python3 AFSD/thumos14/test.py configs/thumos14_flow.yaml --checkpoint_path=models/thumos14_flow/checkpoint-16.ckpt --output_json=thumos14_flow.json

# run fusion (RGB + flow) model
python3 AFSD/thumos14/test.py configs/thumos14.yaml --fusion --output_json=thumos14_fusion.json

Evaluation

The output json results of pretrained model can be downloaded from: [Google Drive], [Weiyun]

# evaluate THUMOS14 fusion result as example
python3 eval.py output/thumos14_fusion.json

mAP at tIoU 0.3 is 0.6728296149479254
mAP at tIoU 0.4 is 0.6242590551201842
mAP at tIoU 0.5 is 0.5546668739091394
mAP at tIoU 0.6 is 0.4374840824921885
mAP at tIoU 0.7 is 0.3110112542745055

Training

# train the RGB model
python3 AFSD/thumos14/train.py configs/thumos14.yaml --lw=10 --cw=1 --piou=0.5

# train the flow model
python3 AFSD/thumos14/train.py configs/thumos14_flow.yaml --lw=10 --cw=1 --piou=0.5

Citation

If you find this project useful for your research, please use the following BibTeX entry.

@inproceedings{lin2021afsd,
  title={Learning Salient Boundary Feature for Anchor-free Temporal Action Localization},
  author={Chuming Lin*, Chengming Xu*, Donghao Luo, Yabiao Wang, Ying Tai, Chengjie Wang, Jilin Li, Feiyue Huang, Yanwei Fu},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2021}
}
Owner
Tencent YouTu Research
Tencent YouTu Research
Continuous Augmented Positional Embeddings (CAPE) implementation for PyTorch

PyTorch implementation of Continuous Augmented Positional Embeddings (CAPE), by Likhomanenko et al. Enhance your Transformer positional embeddings with easy-to-use augmentations!

Guillermo Cámbara 26 Dec 13, 2022
Code for the paper "Attention Approximates Sparse Distributed Memory"

Attention Approximates Sparse Distributed Memory - Codebase This is all of the code used to run analyses in the paper "Attention Approximates Sparse D

Trenton Bricken 14 Dec 05, 2022
一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。

captcha_server 一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。 使用方法 python = 3.8 以上环境 pip install -r requirements.txt -i https://pypi.douban.com/simple gun

Sml2h3 189 Dec 02, 2022
An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models.

DeepNER An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models. This repository contains complex Deep

Derrick 9 May 30, 2022
A Player for Kanye West's Stem Player. Sort of an emulator.

Stem Player Player Stem Player Player Usage Download the latest release here Optional: install ffmpeg, instructions here NOTE: DOES NOT ENABLE DOWNLOA

119 Dec 28, 2022
Contrastive Learning Inverts the Data Generating Process

Official code to reproduce the results and data presented in the paper Contrastive Learning Inverts the Data Generating Process.

71 Nov 25, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
Deep motion generator collections

GenMotion GenMotion (/gen’motion/) is a Python library for making skeletal animations. It enables easy dataset loading and experiment sharing for synt

23 May 24, 2022
Toolbox to analyze temporal context invariance of deep neural networks

PyTCI A toolbox that estimates the integration window of a sensory response using the "Temporal Context Invariance" paradigm (TCI). The TCI method Int

4 Oct 23, 2022
Conditional Gradients For The Approximately Vanishing Ideal

Conditional Gradients For The Approximately Vanishing Ideal Code for the paper: Wirth, E., and Pokutta, S. (2022). Conditional Gradients for the Appro

IOL Lab @ ZIB 0 May 25, 2022
Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Emile van Krieken 140 Dec 30, 2022
Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads-Tutorial-3 Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads Inc 2 Jan 03, 2022
Campsite Reservation Finder

yellowstone-camping UPDATE: yellowstone-camping is being expanded and renamed to camply. The updated tool now interfaces with the Recreation.gov API a

Justin Flannery 233 Jan 08, 2023
Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion

CSF Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion Tips: For testing: CUDA_VISIBLE_DEVICES=0 python main.py For trai

Han Xu 14 Oct 31, 2022
Image Fusion Transformer

Image-Fusion-Transformer Platform Python 3.7 Pytorch =1.0 Training Dataset MS-COCO 2014 (T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ram

Vibashan VS 68 Dec 23, 2022
Categorical Depth Distribution Network for Monocular 3D Object Detection

CaDDN CaDDN is a monocular-based 3D object detection method. This repository is based off of [OpenPCDet]. Categorical Depth Distribution Network for M

Toronto Robotics and AI Laboratory 289 Jan 05, 2023
A PyTorch library and evaluation platform for end-to-end compression research

CompressAI CompressAI (compress-ay) is a PyTorch library and evaluation platform for end-to-end compression research. CompressAI currently provides: c

InterDigital 680 Jan 06, 2023
Training DALL-E with volunteers from all over the Internet using hivemind and dalle-pytorch (NeurIPS 2021 demo)

Training DALL-E with volunteers from all over the Internet This repository is a part of the NeurIPS 2021 demonstration "Training Transformers Together

<a href=[email protected]"> 19 Dec 13, 2022
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning app

Yang Wenhan 117 Jan 03, 2023
Code for "Hierarchical Skills for Efficient Exploration" HSD-3 Algorithm and Baselines

Hierarchical Skills for Efficient Exploration This is the source code release for the paper Hierarchical Skills for Efficient Exploration. It contains

Facebook Research 38 Dec 06, 2022