PyTorch implementation of popular datasets and models in remote sensing

Related tags

Deep Learningtorchrs
Overview

PyTorch Remote Sensing (torchrs)

(WIP) PyTorch implementation of popular datasets and models in remote sensing tasks (Change Detection, Image Super Resolution, Land Cover Classification/Segmentation, Image-to-Image Translation, etc.) for various Optical (Sentinel-2, Landsat, etc.) and Synthetic Aperture Radar (SAR) (Sentinel-1) sensors.

Installation

# pypi
pip install torch-rs

# latest
pip install git+https://github.com/isaaccorley/torchrs

Table of Contents

Datasets

PROBA-V Super Resolution

The PROBA-V Super Resolution Challenge dataset is a Multi-image Super Resolution (MISR) dataset of images taken by the ESA PROBA-Vegetation satellite. The dataset contains sets of unregistered 300m low resolution (LR) images which can be used to generate single 100m high resolution (HR) images for both Near Infrared (NIR) and Red bands. In addition, Quality Masks (QM) for each LR image and Status Masks (SM) for each HR image are available. The PROBA-V contains sensors which take imagery at 100m and 300m spatial resolutions with 5 and 1 day revisit rates, respectively. Generating high resolution imagery estimates would effectively increase the frequency at which HR imagery is available for vegetation monitoring.

The dataset can be downloaded (0.83GB) using scripts/download_probav.sh and instantiated below:

from torchrs.transforms import Compose, ToTensor
from torchrs.datasets import PROBAV

transform = Compose([ToTensor()])

dataset = PROBAV(
    root="path/to/dataset/",
    split="train",  # or 'test'
    band="RED",     # or 'NIR'
    lr_transform=transform,
    hr_transform=transform
)

x = dataset[0]
"""
x: dict(
    lr: low res images  (t, 1, 128, 128)
    qm: quality masks   (t, 1, 128, 128)
    hr: high res image  (1, 384, 384)
    sm: status mask     (1, 384, 384)
)
t varies by set of images (minimum of 9)
"""

ETCI 2021 Flood Detection

The ETCI 2021 Dataset is a Flood Detection segmentation dataset of SAR images taken by the ESA Sentinel-1 satellite. The dataset contains pairs of VV and VH polarization images processed by the Hybrid Pluggable Processing Pipeline (hyp3) along with corresponding binary flood and water body ground truth masks.

The dataset can be downloaded (5.6GB) using scripts/download_etci2021.sh and instantiated below:

from torchrs.transforms import Compose, ToTensor
from torchrs.datasets import ETCI2021

transform = Compose([ToTensor()])

dataset = ETCI2021(
    root="path/to/dataset/",
    split="train",  # or 'val', 'test'
    transform=transform
)

x = dataset[0]
"""
x: dict(
    vv:         (3, 256, 256)
    vh:         (3, 256, 256)
    flood_mask: (1, 256, 256)
    water_mask: (1, 256, 256)
)
"""

Onera Satellite Change Detection (OSCD)

The Onera Satellite Change Detection (OSCD) dataset, proposed in "Urban Change Detection for Multispectral Earth Observation Using Convolutional Neural Networks", Daudt et al. is a Change Detection dataset of 13 band multispectral (MS) images taken by the ESA Sentinel-2 satellite. The dataset contains 24 registered image pairs from multiple continents between 2015-2018 along with binary change masks.

The dataset can be downloaded (0.73GB) using scripts/download_oscd.sh and instantiated below:

from torchrs.transforms import Compose, ToTensor
from torchrs.datasets import OSCD

transform = Compose([ToTensor(permute_dims=False)])

dataset = OSCD(
    root="path/to/dataset/",
    split="train",  # or 'test'
    transform=transform,
)

x = dataset[0]
"""
x: dict(
    x: (2, 13, h, w)
    mask: (1, h, w)
)
"""

Remote Sensing Visual Question Answering (RSVQA) Low Resolution (LR)

The RSVQA LR dataset, proposed in "RSVQA: Visual Question Answering for Remote Sensing Data", Lobry et al. is a visual question answering (VQA) dataset of RGB images taken by the ESA Sentinel-2 satellite. Each image is annotated with a set of questions and their corresponding answers. Among other applications, this dataset can be used to train VQA models to perform scene understanding of medium resolution remote sensing imagery.

The dataset can be downloaded (0.2GB) using scripts/download_rsvqa_lr.sh and instantiated below:

import torchvision.transforms as T
from torchrs.datasets import RSVQALR

transform = T.Compose([T.ToTensor()])

dataset = RSVQALR(
    root="path/to/dataset/",
    split="train",  # or 'val', 'test'
    transform=transform
)

x = dataset[0]
"""
x: dict(
    x:         (3, 256, 256)
    questions:  List[str]
    answers:    List[str]
    types:      List[str]
)
"""

Remote Sensing Image Captioning Dataset (RSICD)

The RSICD dataset, proposed in "Exploring Models and Data for Remote Sensing Image Caption Generation", Lu et al. is an image captioning dataset with 5 captions per image for 10,921 RGB images extracted using Google Earth, Baidu Map, MapABC and Tianditu. While one of the larger remote sensing image captioning datasets, this dataset contains very repetitive language with little detail and many captions are duplicated.

The dataset can be downloaded (0.57GB) using scripts/download_rsicd.sh and instantiated below:

import torchvision.transforms as T
from torchrs.datasets import RSICD

transform = T.Compose([T.ToTensor()])

dataset = RSICD(
    root="path/to/dataset/",
    split="train",  # or 'val', 'test'
    transform=transform
)

x = dataset[0]
"""
x: dict(
    x:        (3, 224, 224)
    captions: List[str]
)
"""

Remote Sensing Image Scene Classification (RESISC45)

The RESISC45 dataset, proposed in "Remote Sensing Image Scene Classification: Benchmark and State of the Art", Cheng et al. is an image classification dataset of 31,500 RGB images extracted using Google Earth Engine. The dataset contains 45 scenes with 700 images per class from over 100 countries and was selected to optimize for high variability in image conditions (spatial resolution, occlusion, weather, illumination, etc.).

The dataset can be downloaded (0.47GB) using scripts/download_resisc45.sh and instantiated below:

import torchvision.transforms as T
from torchrs.datasets import RESISC45

transform = T.Compose([T.ToTensor()])

dataset = RESISC45(
    root="path/to/dataset/",
    transform=transform
)

x, y = dataset[0]
"""
x: (3, 256, 256)
y: int
"""

dataset.classes
"""
['airplane', 'airport', 'baseball_diamond', 'basketball_court', 'beach', 'bridge', 'chaparral',
'church', 'circular_farmland', 'cloud', 'commercial_area', 'dense_residential', 'desert', 'forest',
'freeway', 'golf_course', 'ground_track_field', 'harbor', 'industrial_area', 'intersection', 'island',
'lake', 'meadow', 'medium_residential', 'mobile_home_park', 'mountain', 'overpass', 'palace', 'parking_lot',
'railway', 'railway_station', 'rectangular_farmland', 'river', 'roundabout', 'runway', 'sea_ice', 'ship',
'snowberg', 'sparse_residential', 'stadium', 'storage_tank', 'tennis_court', 'terrace', 'thermal_power_station', 'wetland']
"""

EuroSAT

The EuroSAT dataset, proposed in "EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification", Helber et al. is a land cover classification dataset of 27,000 images taken by the ESA Sentinel-2 satellite. The dataset contains 10 land cover classes with 2-3k images per class from over 34 European countries. The dataset is available in the form of RGB only or all Multispectral (MS) Sentinel-2 bands. This dataset is fairly easy with ~98.6% accuracy achieved with a ResNet-50.

The dataset can be downloaded (.13GB and 2.8GB) using scripts/download_eurosat_rgb.sh or scripts/download_eurosat_ms.sh and instantiated below:

import torchvision.transforms as T
from torchrs.transforms import ToTensor
from torchrs.datasets import EuroSATRGB, EuroSATMS

transform = T.Compose([T.ToTensor()])

dataset = EuroSATRGB(
    root="path/to/dataset/",
    transform=transform
)

x, y = dataset[0]
"""
x: (3, 64, 64)
y: int
"""

transform = T.Compose([ToTensor()])

dataset = EuroSATMS(
    root="path/to/dataset/",
    transform=transform
)

x, y = dataset[0]
"""
x: (13, 64, 64)
y: int
"""

dataset.classes
"""
['AnnualCrop', 'Forest', 'HerbaceousVegetation', 'Highway', 'Industrial',
'Pasture', 'PermanentCrop', 'Residential', 'River', 'SeaLake']
"""

Models

RAMS

Residual Attention Multi-image Super-resolution Network (RAMS) from "Multi-Image Super Resolution of Remotely Sensed Images Using Residual Attention Deep Neural Networks", Salvetti et al. (2021)

RAMS is currently one of the top performers on the PROBA-V Super Resolution Challenge. This Multi-image Super Resolution (MISR) architecture utilizes attention based methods to extract spatial and spatiotemporal features from a set of low resolution images to form a single high resolution image. Note that the attention methods are effectively Squeeze-and-Excitation blocks from "Squeeze-and-Excitation Networks", Hu et al..

import torch
from torchrs.models import RAMS

# increase resolution by factor of 3 (e.g. 128x128 -> 384x384)
model = RAMS(
    scale_factor=3,
    t=9,
    c=1,
    num_feature_attn_blocks=12
)

# Input should be of shape (bs, t, c, h, w), where t is the number
# of low resolution input images and c is the number of channels/bands
lr = torch.randn(1, 9, 1, 128, 128)
sr = model(lr) # (1, 1, 384, 384)

Tests

$ pytest -ra
Comments
  • Error in training example

    Error in training example

    Following the example from the README:

    ValueError                                Traceback (most recent call last)
    <ipython-input-11-f854c515c2ab> in <module>()
    ----> 1 trainer.fit(model, datamodule=dm)
    
    23 frames
    /usr/local/lib/python3.7/dist-packages/torchmetrics/functional/classification/stat_scores.py in _stat_scores_update(preds, target, reduce, mdmc_reduce, num_classes, top_k, threshold, multiclass, ignore_index)
        123         if not mdmc_reduce:
        124             raise ValueError(
    --> 125                 "When your inputs are multi-dimensional multi-class, you have to set the `mdmc_reduce` parameter"
        126             )
        127         if mdmc_reduce == "global":
    
    ValueError: When your inputs are multi-dimensional multi-class, you have to set the `mdmc_reduce` parameter
    
    opened by robmarkcole 3
  • probaV key issue

    probaV key issue

    Listed as

        def __getitem__(self, idx: int) -> Dict[str, torch.Tensor]:
            """ Returns a dict containing lrs, qms, hr, sm
            lrs: (t, 1, h, w) low resolution images
    

    but the key is actually lr. Similarly its not qms but qm

    opened by robmarkcole 3
  • Hello, I use gid data and use the FCEFModule model to train, but the following error is reported. Is it because of a version problem? thanks

    Hello, I use gid data and use the FCEFModule model to train, but the following error is reported. Is it because of a version problem? thanks

    there is my code

    import torch
    import torch.nn as nn
    import pytorch_lightning as pl
    from torchrs.datasets import GID15
    from torchrs.train.modules import FCEFModule
    from torchrs.train.datamodules import GID15DataModule
    from torchrs.transforms import Compose, ToTensor
    
    
    def collate_fn(batch):
        x = torch.stack([x["x"] for x in batch])
        y = torch.cat([x["mask"] for x in batch])
        x = x.to(torch.float32)
        y = y.to(torch.long)
        return x, y
    
    transform = Compose([ToTensor()])
    
    dm = GID15DataModule(
        root="./datasets/gid-15",
        transform=transform,
        batch_size=128,
        num_workers=1,
        prefetch_factor=1,
        collate_fn=collate_fn,
        test_collate_fn=collate_fn,
    )
    
    
    model = FCEFModule(channels=3, t=2, num_classes=15, lr=1E-3)
    
    
    callbacks = [
        pl.callbacks.ModelCheckpoint(monitor="val_loss", mode="min", verbose=True, save_top_k=1),
        pl.callbacks.EarlyStopping(monitor="val_loss", mode="min", patience=10)
    ]
    
    trainer = pl.Trainer(
        gpus=1,
        precision=16,
        accumulate_grad_batches=1,
        max_epochs=25,
        callbacks=callbacks,
        weights_summary="top"
    )
    #
    trainer.fit(model, datamodule=dm)
    trainer.test(datamodule=dm)
    

    Error

    image

    opened by olongfen 2
  • Torchmetrics update

    Torchmetrics update

    • Updated segmentation metrics input args (namely added the mdmc_average="global" args) e.g.
    torchmetrics.Accuracy(threshold=0.5, num_classes=num_classes, average="micro", mdmc_average="global"),
    
    opened by isaaccorley 0
  • Change Detection models

    Change Detection models

    • Added EarlyFusion (EF) and Siamese (Siam) from the OSCD dataset paper
    • Added Fully convolutional EarlyFusion (FC-EF), Siamese Concatenation (FC-Siam-conc), and Siamese Difference (FC-Siam-diff)
    opened by isaaccorley 0
  • converted to datamodules and modules, updated readme, added install e…

    converted to datamodules and modules, updated readme, added install e…

    • Created LightningDataModule for each Dataset
    • Created LightningModule for each Model
    • Moved some config in setup.py to setup.cfg
    • Some minor fixes to a few datasets
    opened by isaaccorley 0
  • fair1m Only small part 1 dataset

    fair1m Only small part 1 dataset

    I noticed the official dataset is split into parts 1 & 2, with the bulk of the images being in part 2

    image

    The data downloaded using the script in this repo only downloads a subset of 1733 images, which I believe are the part 1 images?

    opened by robmarkcole 2
  • probav training memory error

    probav training memory error

    Using colab pro with nominally 25 Gb I am still running out of memory at 17 epochs using your probav example notebook. Is there any way to free memory on the fly? I was able to train the tensorflow RAMS implementation to 50 epochs on colab pro

    CUDA out of memory. Tried to allocate 46.00 MiB (GPU 0; 15.90 GiB total capacity; 14.01 GiB already allocated; 25.75 MiB free; 14.96 GiB reserved in total by PyTorch)
    
    opened by robmarkcole 5
Releases(0.0.4)
  • 0.0.4(Sep 3, 2021)

    • Added RSVQAHR, Sydney Captions, UC Merced Captions, S2MTCP, ADVANCE, SAT-4, SAT-6, HRSCD, Inria AIL, TiSeLaC, GID-15, ZeuriCrop, AID, Dubai Segmentation, HKH Glacier Mapping, UC Merced, PatternNet, WHU-RS19, RSSCN7, Brazilian Coffee Scenes datasets & datamodules
    • Added methods for creating train/val/test splits in datamodules
    • Added ExtractChips transform
    • Added dataset and datamodules local tests
    • Added h5py, imagecodecs, torchaudio reqs
    • Some minor fixes+additions to current datasets
    • Added FCEF, FCSiamConc, FCSiamDiff PL modules
    Source code(tar.gz)
    Source code(zip)
  • 0.0.3(Aug 2, 2021)

  • 0.0.2(Jul 26, 2021)

Owner
isaac
Senior Computer Vision Engineer @ BlackSky, Ph.D. Student at the University of Texas at San Antonio. Former @housecanary, @boozallen, @swri, @ornl
isaac
RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining

RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining Our code is based on Learning Attention-based Embed

宋朝都 4 Aug 07, 2022
Management Dashboard for Torchserve

Torchserve Dashboard Torchserve Dashboard using Streamlit Related blog post Usage Additional Requirement: torchserve (recommended:v0.5.2) Simply run:

Ceyda Cinarel 103 Dec 10, 2022
[CVPR 2022] TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing

TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing (CVPR 2022) This repository provides the official PyTorch impleme

Billy XU 128 Jan 03, 2023
This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

Quinn Herden 1 Feb 04, 2022
Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Bae, Gwangbin 95 Jan 04, 2023
Python framework for Stochastic Differential Equations modeling

SDElearn: a Python package for SDE modeling This package implements functionalities for working with Stochastic Differential Equations models (SDEs fo

4 May 10, 2022
Free like Freedom

This is all very much a work in progress! More to come! ( We're working on it though! Stay tuned!) Installation Open an Anaconda Prompt (in Windows, o

2.3k Jan 04, 2023
Explainable Medical ImageSegmentation via GenerativeAdversarial Networks andLayer-wise Relevance Propagation

MedAI: Transparency in Medical Image Segmentation What is this repo This repo contains the code and experiments that are implemented to contribute in

Awadelrahman M. A. Ahmed 1 Nov 22, 2021
Weighing Counts: Sequential Crowd Counting by Reinforcement Learning

LibraNet This repository includes the official implementation of LibraNet for crowd counting, presented in our paper: Weighing Counts: Sequential Crow

Hao Lu 18 Nov 05, 2022
Simple and Robust Loss Design for Multi-Label Learning with Missing Labels

Simple and Robust Loss Design for Multi-Label Learning with Missing Labels Official PyTorch Implementation of the paper Simple and Robust Loss Design

Xinyu Huang 28 Oct 27, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

MoCoPnet: Exploring Local Motion and Contrast Priors for Infrared Small Target Super-Resolution Pytorch implementation of local motion and contrast pr

Xinyi Ying 28 Dec 15, 2022
Artificial intelligence technology inferring issues and logically supporting facts from raw text

개요 비정형 텍스트를 학습하여 쟁점별 사실과 논리적 근거 추론이 가능한 인공지능 원천기술 Artificial intelligence techno

6 Dec 29, 2021
It's a powerful version of linebot

CTPS-FINAL Linbot-sever.py 主程式 Algorithm.py 推薦演算法,媒合餐廳端資料與顧客端資料 config.ini 儲存 channel-access-token、channel-secret 資料 Preface 生活在成大將近4年,我們每天的午餐時間看著形形色色

1 Oct 17, 2022
nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures.

nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures. Here you will find the scripts necessary to produce th

Jesse Willis 0 Jan 20, 2022
Official Pytorch Implementation of Length-Adaptive Transformer (ACL 2021)

Length-Adaptive Transformer This is the official Pytorch implementation of Length-Adaptive Transformer. For detailed information about the method, ple

Clova AI Research 93 Dec 28, 2022
Implements VQGAN+CLIP for image and video generation, and style transfers, based on text and image prompts. Emphasis on ease-of-use, documentation, and smooth video creation.

VQGAN-CLIP-GENERATOR Overview This is a package (with available notebook) for running VQGAN+CLIP locally, with a focus on ease of use, good documentat

Ryan Hamilton 98 Dec 30, 2022
Learning to Self-Train for Semi-Supervised Few-Shot

Learning to Self-Train for Semi-Supervised Few-Shot Classification This repository contains the TensorFlow implementation for NeurIPS 2019 Paper "Lear

86 Dec 29, 2022
Code and models for ICCV2021 paper "Robust Object Detection via Instance-Level Temporal Cycle Confusion".

Robust Object Detection via Instance-Level Temporal Cycle Confusion This repo contains the implementation of the ICCV 2021 paper, Robust Object Detect

Xin Wang 69 Oct 13, 2022
[ICML'21] Estimate the accuracy of the classifier in various environments through self-supervision

What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments? [Paper] [ICML'21 Project] PyTorch Implementation T

24 Oct 26, 2022