PyTorch implementation of popular datasets and models in remote sensing

Related tags

Deep Learningtorchrs
Overview

PyTorch Remote Sensing (torchrs)

(WIP) PyTorch implementation of popular datasets and models in remote sensing tasks (Change Detection, Image Super Resolution, Land Cover Classification/Segmentation, Image-to-Image Translation, etc.) for various Optical (Sentinel-2, Landsat, etc.) and Synthetic Aperture Radar (SAR) (Sentinel-1) sensors.

Installation

# pypi
pip install torch-rs

# latest
pip install git+https://github.com/isaaccorley/torchrs

Table of Contents

Datasets

PROBA-V Super Resolution

The PROBA-V Super Resolution Challenge dataset is a Multi-image Super Resolution (MISR) dataset of images taken by the ESA PROBA-Vegetation satellite. The dataset contains sets of unregistered 300m low resolution (LR) images which can be used to generate single 100m high resolution (HR) images for both Near Infrared (NIR) and Red bands. In addition, Quality Masks (QM) for each LR image and Status Masks (SM) for each HR image are available. The PROBA-V contains sensors which take imagery at 100m and 300m spatial resolutions with 5 and 1 day revisit rates, respectively. Generating high resolution imagery estimates would effectively increase the frequency at which HR imagery is available for vegetation monitoring.

The dataset can be downloaded (0.83GB) using scripts/download_probav.sh and instantiated below:

from torchrs.transforms import Compose, ToTensor
from torchrs.datasets import PROBAV

transform = Compose([ToTensor()])

dataset = PROBAV(
    root="path/to/dataset/",
    split="train",  # or 'test'
    band="RED",     # or 'NIR'
    lr_transform=transform,
    hr_transform=transform
)

x = dataset[0]
"""
x: dict(
    lr: low res images  (t, 1, 128, 128)
    qm: quality masks   (t, 1, 128, 128)
    hr: high res image  (1, 384, 384)
    sm: status mask     (1, 384, 384)
)
t varies by set of images (minimum of 9)
"""

ETCI 2021 Flood Detection

The ETCI 2021 Dataset is a Flood Detection segmentation dataset of SAR images taken by the ESA Sentinel-1 satellite. The dataset contains pairs of VV and VH polarization images processed by the Hybrid Pluggable Processing Pipeline (hyp3) along with corresponding binary flood and water body ground truth masks.

The dataset can be downloaded (5.6GB) using scripts/download_etci2021.sh and instantiated below:

from torchrs.transforms import Compose, ToTensor
from torchrs.datasets import ETCI2021

transform = Compose([ToTensor()])

dataset = ETCI2021(
    root="path/to/dataset/",
    split="train",  # or 'val', 'test'
    transform=transform
)

x = dataset[0]
"""
x: dict(
    vv:         (3, 256, 256)
    vh:         (3, 256, 256)
    flood_mask: (1, 256, 256)
    water_mask: (1, 256, 256)
)
"""

Onera Satellite Change Detection (OSCD)

The Onera Satellite Change Detection (OSCD) dataset, proposed in "Urban Change Detection for Multispectral Earth Observation Using Convolutional Neural Networks", Daudt et al. is a Change Detection dataset of 13 band multispectral (MS) images taken by the ESA Sentinel-2 satellite. The dataset contains 24 registered image pairs from multiple continents between 2015-2018 along with binary change masks.

The dataset can be downloaded (0.73GB) using scripts/download_oscd.sh and instantiated below:

from torchrs.transforms import Compose, ToTensor
from torchrs.datasets import OSCD

transform = Compose([ToTensor(permute_dims=False)])

dataset = OSCD(
    root="path/to/dataset/",
    split="train",  # or 'test'
    transform=transform,
)

x = dataset[0]
"""
x: dict(
    x: (2, 13, h, w)
    mask: (1, h, w)
)
"""

Remote Sensing Visual Question Answering (RSVQA) Low Resolution (LR)

The RSVQA LR dataset, proposed in "RSVQA: Visual Question Answering for Remote Sensing Data", Lobry et al. is a visual question answering (VQA) dataset of RGB images taken by the ESA Sentinel-2 satellite. Each image is annotated with a set of questions and their corresponding answers. Among other applications, this dataset can be used to train VQA models to perform scene understanding of medium resolution remote sensing imagery.

The dataset can be downloaded (0.2GB) using scripts/download_rsvqa_lr.sh and instantiated below:

import torchvision.transforms as T
from torchrs.datasets import RSVQALR

transform = T.Compose([T.ToTensor()])

dataset = RSVQALR(
    root="path/to/dataset/",
    split="train",  # or 'val', 'test'
    transform=transform
)

x = dataset[0]
"""
x: dict(
    x:         (3, 256, 256)
    questions:  List[str]
    answers:    List[str]
    types:      List[str]
)
"""

Remote Sensing Image Captioning Dataset (RSICD)

The RSICD dataset, proposed in "Exploring Models and Data for Remote Sensing Image Caption Generation", Lu et al. is an image captioning dataset with 5 captions per image for 10,921 RGB images extracted using Google Earth, Baidu Map, MapABC and Tianditu. While one of the larger remote sensing image captioning datasets, this dataset contains very repetitive language with little detail and many captions are duplicated.

The dataset can be downloaded (0.57GB) using scripts/download_rsicd.sh and instantiated below:

import torchvision.transforms as T
from torchrs.datasets import RSICD

transform = T.Compose([T.ToTensor()])

dataset = RSICD(
    root="path/to/dataset/",
    split="train",  # or 'val', 'test'
    transform=transform
)

x = dataset[0]
"""
x: dict(
    x:        (3, 224, 224)
    captions: List[str]
)
"""

Remote Sensing Image Scene Classification (RESISC45)

The RESISC45 dataset, proposed in "Remote Sensing Image Scene Classification: Benchmark and State of the Art", Cheng et al. is an image classification dataset of 31,500 RGB images extracted using Google Earth Engine. The dataset contains 45 scenes with 700 images per class from over 100 countries and was selected to optimize for high variability in image conditions (spatial resolution, occlusion, weather, illumination, etc.).

The dataset can be downloaded (0.47GB) using scripts/download_resisc45.sh and instantiated below:

import torchvision.transforms as T
from torchrs.datasets import RESISC45

transform = T.Compose([T.ToTensor()])

dataset = RESISC45(
    root="path/to/dataset/",
    transform=transform
)

x, y = dataset[0]
"""
x: (3, 256, 256)
y: int
"""

dataset.classes
"""
['airplane', 'airport', 'baseball_diamond', 'basketball_court', 'beach', 'bridge', 'chaparral',
'church', 'circular_farmland', 'cloud', 'commercial_area', 'dense_residential', 'desert', 'forest',
'freeway', 'golf_course', 'ground_track_field', 'harbor', 'industrial_area', 'intersection', 'island',
'lake', 'meadow', 'medium_residential', 'mobile_home_park', 'mountain', 'overpass', 'palace', 'parking_lot',
'railway', 'railway_station', 'rectangular_farmland', 'river', 'roundabout', 'runway', 'sea_ice', 'ship',
'snowberg', 'sparse_residential', 'stadium', 'storage_tank', 'tennis_court', 'terrace', 'thermal_power_station', 'wetland']
"""

EuroSAT

The EuroSAT dataset, proposed in "EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification", Helber et al. is a land cover classification dataset of 27,000 images taken by the ESA Sentinel-2 satellite. The dataset contains 10 land cover classes with 2-3k images per class from over 34 European countries. The dataset is available in the form of RGB only or all Multispectral (MS) Sentinel-2 bands. This dataset is fairly easy with ~98.6% accuracy achieved with a ResNet-50.

The dataset can be downloaded (.13GB and 2.8GB) using scripts/download_eurosat_rgb.sh or scripts/download_eurosat_ms.sh and instantiated below:

import torchvision.transforms as T
from torchrs.transforms import ToTensor
from torchrs.datasets import EuroSATRGB, EuroSATMS

transform = T.Compose([T.ToTensor()])

dataset = EuroSATRGB(
    root="path/to/dataset/",
    transform=transform
)

x, y = dataset[0]
"""
x: (3, 64, 64)
y: int
"""

transform = T.Compose([ToTensor()])

dataset = EuroSATMS(
    root="path/to/dataset/",
    transform=transform
)

x, y = dataset[0]
"""
x: (13, 64, 64)
y: int
"""

dataset.classes
"""
['AnnualCrop', 'Forest', 'HerbaceousVegetation', 'Highway', 'Industrial',
'Pasture', 'PermanentCrop', 'Residential', 'River', 'SeaLake']
"""

Models

RAMS

Residual Attention Multi-image Super-resolution Network (RAMS) from "Multi-Image Super Resolution of Remotely Sensed Images Using Residual Attention Deep Neural Networks", Salvetti et al. (2021)

RAMS is currently one of the top performers on the PROBA-V Super Resolution Challenge. This Multi-image Super Resolution (MISR) architecture utilizes attention based methods to extract spatial and spatiotemporal features from a set of low resolution images to form a single high resolution image. Note that the attention methods are effectively Squeeze-and-Excitation blocks from "Squeeze-and-Excitation Networks", Hu et al..

import torch
from torchrs.models import RAMS

# increase resolution by factor of 3 (e.g. 128x128 -> 384x384)
model = RAMS(
    scale_factor=3,
    t=9,
    c=1,
    num_feature_attn_blocks=12
)

# Input should be of shape (bs, t, c, h, w), where t is the number
# of low resolution input images and c is the number of channels/bands
lr = torch.randn(1, 9, 1, 128, 128)
sr = model(lr) # (1, 1, 384, 384)

Tests

$ pytest -ra
Comments
  • Error in training example

    Error in training example

    Following the example from the README:

    ValueError                                Traceback (most recent call last)
    <ipython-input-11-f854c515c2ab> in <module>()
    ----> 1 trainer.fit(model, datamodule=dm)
    
    23 frames
    /usr/local/lib/python3.7/dist-packages/torchmetrics/functional/classification/stat_scores.py in _stat_scores_update(preds, target, reduce, mdmc_reduce, num_classes, top_k, threshold, multiclass, ignore_index)
        123         if not mdmc_reduce:
        124             raise ValueError(
    --> 125                 "When your inputs are multi-dimensional multi-class, you have to set the `mdmc_reduce` parameter"
        126             )
        127         if mdmc_reduce == "global":
    
    ValueError: When your inputs are multi-dimensional multi-class, you have to set the `mdmc_reduce` parameter
    
    opened by robmarkcole 3
  • probaV key issue

    probaV key issue

    Listed as

        def __getitem__(self, idx: int) -> Dict[str, torch.Tensor]:
            """ Returns a dict containing lrs, qms, hr, sm
            lrs: (t, 1, h, w) low resolution images
    

    but the key is actually lr. Similarly its not qms but qm

    opened by robmarkcole 3
  • Hello, I use gid data and use the FCEFModule model to train, but the following error is reported. Is it because of a version problem? thanks

    Hello, I use gid data and use the FCEFModule model to train, but the following error is reported. Is it because of a version problem? thanks

    there is my code

    import torch
    import torch.nn as nn
    import pytorch_lightning as pl
    from torchrs.datasets import GID15
    from torchrs.train.modules import FCEFModule
    from torchrs.train.datamodules import GID15DataModule
    from torchrs.transforms import Compose, ToTensor
    
    
    def collate_fn(batch):
        x = torch.stack([x["x"] for x in batch])
        y = torch.cat([x["mask"] for x in batch])
        x = x.to(torch.float32)
        y = y.to(torch.long)
        return x, y
    
    transform = Compose([ToTensor()])
    
    dm = GID15DataModule(
        root="./datasets/gid-15",
        transform=transform,
        batch_size=128,
        num_workers=1,
        prefetch_factor=1,
        collate_fn=collate_fn,
        test_collate_fn=collate_fn,
    )
    
    
    model = FCEFModule(channels=3, t=2, num_classes=15, lr=1E-3)
    
    
    callbacks = [
        pl.callbacks.ModelCheckpoint(monitor="val_loss", mode="min", verbose=True, save_top_k=1),
        pl.callbacks.EarlyStopping(monitor="val_loss", mode="min", patience=10)
    ]
    
    trainer = pl.Trainer(
        gpus=1,
        precision=16,
        accumulate_grad_batches=1,
        max_epochs=25,
        callbacks=callbacks,
        weights_summary="top"
    )
    #
    trainer.fit(model, datamodule=dm)
    trainer.test(datamodule=dm)
    

    Error

    image

    opened by olongfen 2
  • Torchmetrics update

    Torchmetrics update

    • Updated segmentation metrics input args (namely added the mdmc_average="global" args) e.g.
    torchmetrics.Accuracy(threshold=0.5, num_classes=num_classes, average="micro", mdmc_average="global"),
    
    opened by isaaccorley 0
  • Change Detection models

    Change Detection models

    • Added EarlyFusion (EF) and Siamese (Siam) from the OSCD dataset paper
    • Added Fully convolutional EarlyFusion (FC-EF), Siamese Concatenation (FC-Siam-conc), and Siamese Difference (FC-Siam-diff)
    opened by isaaccorley 0
  • converted to datamodules and modules, updated readme, added install e…

    converted to datamodules and modules, updated readme, added install e…

    • Created LightningDataModule for each Dataset
    • Created LightningModule for each Model
    • Moved some config in setup.py to setup.cfg
    • Some minor fixes to a few datasets
    opened by isaaccorley 0
  • fair1m Only small part 1 dataset

    fair1m Only small part 1 dataset

    I noticed the official dataset is split into parts 1 & 2, with the bulk of the images being in part 2

    image

    The data downloaded using the script in this repo only downloads a subset of 1733 images, which I believe are the part 1 images?

    opened by robmarkcole 2
  • probav training memory error

    probav training memory error

    Using colab pro with nominally 25 Gb I am still running out of memory at 17 epochs using your probav example notebook. Is there any way to free memory on the fly? I was able to train the tensorflow RAMS implementation to 50 epochs on colab pro

    CUDA out of memory. Tried to allocate 46.00 MiB (GPU 0; 15.90 GiB total capacity; 14.01 GiB already allocated; 25.75 MiB free; 14.96 GiB reserved in total by PyTorch)
    
    opened by robmarkcole 5
Releases(0.0.4)
  • 0.0.4(Sep 3, 2021)

    • Added RSVQAHR, Sydney Captions, UC Merced Captions, S2MTCP, ADVANCE, SAT-4, SAT-6, HRSCD, Inria AIL, TiSeLaC, GID-15, ZeuriCrop, AID, Dubai Segmentation, HKH Glacier Mapping, UC Merced, PatternNet, WHU-RS19, RSSCN7, Brazilian Coffee Scenes datasets & datamodules
    • Added methods for creating train/val/test splits in datamodules
    • Added ExtractChips transform
    • Added dataset and datamodules local tests
    • Added h5py, imagecodecs, torchaudio reqs
    • Some minor fixes+additions to current datasets
    • Added FCEF, FCSiamConc, FCSiamDiff PL modules
    Source code(tar.gz)
    Source code(zip)
  • 0.0.3(Aug 2, 2021)

  • 0.0.2(Jul 26, 2021)

Owner
isaac
Senior Computer Vision Engineer @ BlackSky, Ph.D. Student at the University of Texas at San Antonio. Former @housecanary, @boozallen, @swri, @ornl
isaac
All public open-source implementations of convnets benchmarks

convnet-benchmarks Easy benchmarking of all public open-source implementations of convnets. A summary is provided in the section below. Machine: 6-cor

Soumith Chintala 2.7k Dec 30, 2022
[ICRA2021] Reconstructing Interactive 3D Scene by Panoptic Mapping and CAD Model Alignment

Interactive Scene Reconstruction Project Page | Paper This repository contains the implementation of our ICRA2021 paper Reconstructing Interactive 3D

97 Dec 28, 2022
Deep Learning Algorithms for Hedging with Frictions

Deep Learning Algorithms for Hedging with Frictions This repository contains the Forward-Backward Stochastic Differential Equation (FBSDE) solver and

Xiaofei Shi 3 Dec 22, 2022
Implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.

ALPHAMEPOL This repository contains the implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Envir

3 Dec 23, 2021
Experiments and code to generate the GINC small-scale in-context learning dataset from "An Explanation for In-context Learning as Implicit Bayesian Inference"

GINC small-scale in-context learning dataset GINC (Generative In-Context learning Dataset) is a small-scale synthetic dataset for studying in-context

P-Lambda 29 Dec 19, 2022
AI Based Smart Exam Proctoring Package

AI Based Smart Exam Proctoring Package It takes image (base64) as input: Provide Output as: Detection of Mobile phone. Detection of More than 1 person

NARENDER KESWANI 3 Sep 09, 2022
Spectral Tensor Train Parameterization of Deep Learning Layers

Spectral Tensor Train Parameterization of Deep Learning Layers This repository is the official implementation of our AISTATS 2021 paper titled "Spectr

Anton Obukhov 12 Oct 23, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 05, 2023
RobustVideoMatting and background composing in one model by using onnxruntime.

RVM_onnx_compose RobustVideoMatting and background composing in one model by using onnxruntime. Usage pip install -r requirements.txt python infer_cam

Quantum Liu 4 Apr 07, 2022
Stroke-predictions-ml-model - Machine learning model to predict individuals chances of having a stroke

stroke-predictions-ml-model machine learning model to predict individuals chance

Alex Volchek 1 Jan 03, 2022
Multi-resolution SeqMatch based long-term Place Recognition

MRS-SLAM for long-term place recognition In this work, we imply an multi-resolution sambling based visual place recognition method. This work is based

METASLAM 6 Dec 06, 2022
Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift

This repository contains the official code of OSTAR in "Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift" (ICLR 2022).

Matthieu Kirchmeyer 5 Dec 06, 2022
Predicts an answer in yes or no.

Oui-ou-non-prediction Predicts an answer in 'yes' or 'no'. It is based on the game 'effeuiller la marguerite' in which the person plucks flower petals

Ananya Gupta 1 Jan 15, 2022
[CVPR 2021] Official PyTorch Implementation for "Iterative Filter Adaptive Network for Single Image Defocus Deblurring"

IFAN: Iterative Filter Adaptive Network for Single Image Defocus Deblurring Checkout for the demo (GUI/Google Colab)! The GUI version might occasional

Junyong Lee 173 Dec 30, 2022
Mmdetection3d Noted - MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch

Jiangjingwen 13 Jan 06, 2023
Repository for MuSiQue: Multi-hop Questions via Single-hop Question Composition

🎵 MuSiQue: Multi-hop Questions via Single-hop Question Composition This is the repository for our paper "MuSiQue: Multi-hop Questions via Single-hop

21 Jan 02, 2023
PyTorch implementation of Glow

glow-pytorch PyTorch implementation of Glow, Generative Flow with Invertible 1x1 Convolutions (https://arxiv.org/abs/1807.03039) Usage: python train.p

Kim Seonghyeon 433 Dec 27, 2022
Code for the paper "Location-aware Single Image Reflection Removal"

Location-aware Single Image Reflection Removal The shown images are provided by the datasets from IBCLN, ERRNet, SIR2 and the Internet images. The cod

72 Dec 08, 2022
[NeurIPS 2021] Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples | ⛰️⚠️

Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples This repository is the official implementation of "Tow

Sungyoon Lee 4 Jul 12, 2022
Source code for "Taming Visually Guided Sound Generation" (Oral at the BMVC 2021)

Taming Visually Guided Sound Generation • [Project Page] • [ArXiv] • [Poster] • • Listen for the samples on our project page. Overview We propose to t

Vladimir Iashin 226 Jan 03, 2023