Synthetic Humans for Action Recognition, IJCV 2021

Related tags

Deep Learningsurreact
Overview

SURREACT: Synthetic Humans for Action Recognition from Unseen Viewpoints

Gül Varol, Ivan Laptev and Cordelia Schmid, Andrew Zisserman, Synthetic Humans for Action Recognition from Unseen Viewpoints, IJCV 2021.

[Project page] [arXiv]

Contents

1. Synthetic data generation from motion estimation

Please follow the instructions at datageneration/README.md for setting up the Blender environment and downloading required assets.

Once ready, you can generate one clip by running:

# set `BLENDER_PATH` and `CODE_PATH` variables in this script
bash datageneration/exe/run.sh

Note that -t 1 option in run.sh can be removed to run faster on multi cores. We used submit_multi_job*.sh to generate clips for the whole datasets in parallel on the cluster, you can adapt this for your infrastructure. This script also has sample argument-value pairs. Find in utils/argutils.py a list of arguments and their explanations. You can enable/disable outputting certain modalities by setting output_types here.

2. Training action recognition models

Please follow the instructions at training/README.md for setting up the Pytorch environment and preparing the datasets.

Once ready, you can launch training by running:

cd training/
bash exp/surreact_train.sh

3. Download SURREACT datasets

In order to download SURREACT datasets, you need to accept the license terms from SURREAL. The links to license terms and download procedure are available here:

https://www.di.ens.fr/willow/research/surreal/data/

Once you receive the credentials to download the dataset, you will have a personal username and password. Use these to download the synthetic videos from the following links. Note that due to storage complexity, we only provide .mp4 video files and metadata, but not the other modalities such as flow and segmentation. You are encouraged to run the data generation code to obtain those. We provide videos corresponding to NTU and UESTC datasets.

The structure of the folders can be as follows:

surreact/
------- uestc/  # using motion estimates from the UESTC dataset
------------ hmmr/
------------ vibe/
------- ntu/  # using motion estimates from the NTU dataset
------------ hmmr/
------------ vibe/
---------------- train/
---------------- test/
--------------------- <sequenceName>/ # e.g. S001C002P003R002A001 for NTU, a25_d1_p048_c1_color.avi for UESTC
------------------------------ <sequenceName>_v%03d_r%02d.mp4       # RGB - 240x320 resolution video
------------------------------ <sequenceName>_v%03d_r%02d_info.mat  # metadata
# bg         [char]          - name of the background image file
# cam_dist   [1 single]      - camera distance
# cam_height [1 single]      - camera height
# cloth      [chat]          - name of the texture image file
# gender     [1 uint8]       - gender (0: 'female', 1: 'male')
# joints2D   [2x24xT single] - 2D coordinates of 24 SMPL body joints on the image pixels
# joints3D   [3x24xT single] - 3D coordinates of 24 SMPL body joints in world meters
# light      [9 single]      - spherical harmonics lighting coefficients
# pose       [72xT single]   - SMPL parameters (axis-angle)
# sequence   [char]          - <sequenceName>
# shape      [10 single]     - body shape parameters
# source     [char]          - 'ntu' | 'hri40'
# zrot_euler [1 single]      - rotation in Z (euler angle), zero

# *** v%03d stands for the viewpoint in euler angles, we render 8 views: 000, 045, 090, 135, 180, 225, 270, 315.
# *** r%02d stands for the repetition, when the same video is rendered multiple times (this is always 00 for the released files)
# *** T is the number of frames, note that this can be smaller than the real source video length due to motion estimation dropping frames

Citation

If you use this code or data, please cite the following:

@INPROCEEDINGS{varol21_surreact,  
  title     = {Synthetic Humans for Action Recognition from Unseen Viewpoints},  
  author    = {Varol, G{\"u}l and Laptev, Ivan and Schmid, Cordelia and Zisserman, Andrew},  
  booktitle = {IJCV},  
  year      = {2021}  
}

License

Please check the SURREAL license terms before downloading and/or using the SURREACT data and data generation code.

Acknowledgements

The data generation code was extended from gulvarol/surreal. The training code was extended from bearpaw/pytorch-pose. The source of assets include action recognition datasets NTU and UESTC, SMPL and SURREAL projects. The motion estimation was possible thanks to mkocabas/VIBE or akanazawa/human_dynamics (HMMR) repositories. Please cite the respective papers if you use these.

Special thanks to Inria clusters sequoia and rioc.

Owner
Gul Varol
Computer Vision Researcher
Gul Varol
PyTorch implementation of "A Simple Baseline for Low-Budget Active Learning".

A Simple Baseline for Low-Budget Active Learning This repository is the implementation of A Simple Baseline for Low-Budget Active Learning. In this pa

10 Nov 14, 2022
RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving

RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving (AAAI2021). RTS3D is efficiency and accuracy s

71 Nov 29, 2022
Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.

Less is More: Pay Less Attention in Vision Transformers Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers. By

73 Jan 01, 2023
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation. Training python train.py --c

Rishikesh (ऋषिकेश) 55 Dec 26, 2022
This tool uses Deep Learning to help you draw and write with your hand and webcam.

This tool uses Deep Learning to help you draw and write with your hand and webcam. A Deep Learning model is used to try to predict whether you want to have 'pencil up' or 'pencil down'.

lmagne 169 Dec 10, 2022
Pytorch implementation of AREL

Status: Archive (code is provided as-is, no updates expected) Agent-Temporal Attention for Reward Redistribution in Episodic Multi-Agent Reinforcement

8 Nov 25, 2022
PyMove is a Python library to simplify queries and visualization of trajectories and other spatial-temporal data

Use PyMove and go much further Information Package Status License Python Version Platforms Build Status PyPi version PyPi Downloads Conda version Cond

Insight Data Science Lab 64 Nov 15, 2022
Woosung Choi 63 Nov 14, 2022
PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020).

Scaffold-Federated-Learning PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020). Environment numpy=

KI 30 Dec 29, 2022
Measuring Coding Challenge Competence With APPS

Measuring Coding Challenge Competence With APPS This is the repository for Measuring Coding Challenge Competence With APPS by Dan Hendrycks*, Steven B

Dan Hendrycks 218 Dec 27, 2022
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Environments Effi

Weirui Ye 671 Jan 03, 2023
A Model for Natural Language Attack on Text Classification and Inference

TextFooler A Model for Natural Language Attack on Text Classification and Inference This is the source code for the paper: Jin, Di, et al. "Is BERT Re

Di Jin 418 Dec 16, 2022
a project for 3D multi-object tracking

a project for 3D multi-object tracking

155 Jan 04, 2023
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information

ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information This repository contains code, model, dataset for ChineseBERT at ACL2021. Ch

413 Dec 01, 2022
PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

WuJinxuan 144 Dec 26, 2022
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode

Alibaba 1.4k Jan 01, 2023
The-Secret-Sharing-Schemes - This interactive script demonstrates the Secret Sharing Schemes algorithm

The-Secret-Sharing-Schemes This interactive script demonstrates the Secret Shari

Nishaant Goswamy 1 Jan 02, 2022
Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)

GS-WGAN This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS

46 Nov 09, 2022
The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift

TwoStageAlign The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift Pa

Shi Guo 32 Dec 15, 2022