Implementation of MA-Trace - a general-purpose multi-agent RL algorithm for cooperative environments.

Related tags

Deep Learningseed_rl
Overview

Off-Policy Correction For Multi-Agent Reinforcement Learning

This repository is the official implementation of Off-Policy Correction For Multi-Agent Reinforcement Learning. It is based on SEED RL, commit 5f07ba2a072c7a562070b5a0b3574b86cd72980f.

Requirements

Execution of our code is done within Docker container, you must install Docker according to the instructions provided by the authors. The specific requirements for our project are prepared as dockerfile (docker/Dockerfile.starcraft) and installed inside a container during the first execution of running script. Before running training, firstly build its base image by running:

./docker_base/marlgrid/docker/build_base.sh

Note that to execute docker commands you may need to use sudo or install Docker in rootless mode.

Training

To train a MA-Trace model, run the following command:

./run_local.sh starcraft vtrace [nb of actors] [configuration]

The [nb of actors] specifies the number of workers used for training, should be a positive natural number.

The [configuration] specifies the hyperparameters of training.

The most important hyperparameters are:

  • learning_rate the learning rate
  • entropy_cost initial entropy cost
  • target_entropy final entropy cost
  • entropy_cost_adjustment_speed how fast should entropy cost be adjusted towards the final value
  • frames_stacked the number of stacked frames
  • batch_size the size of training batches
  • discounting the discount factor
  • full_state_critic whether to use full state as input to critic network, set False to use only agents' observations
  • is_centralized whether to perform centralized or decentralized training
  • task_name name of the SMAC task to train on, see the section below

There are other parameters to configure, listed in the files, though of minor importance.

The running script provides evaluation metrics during training. They are displayed using tmux, consider checking the navigation controls.

For example, to use default parameters and one actor, run:

./run_local.sh starcraft vtrace 1 ""

To train the algorithm specified in the paper:

  • MA-Trace (obs): ./run_local.sh starcraft vtrace 1 "--full_state_critic=False"
  • MA-Trace (full): ./run_local.sh starcraft vtrace 1 "--full_state_critic=True"
  • DecMa-Trace: ./run_local.sh starcraft vtrace 1 "--is_centralized=False"
  • MA-Trace (obs) with 3 stacked observations: ./run_local.sh starcraft vtrace 1 "--full_state_critic=False --frames_stacked=3"
  • MA-Trace (full) with 4 stacked observations: ./run_local.sh starcraft vtrace 1 "--full_state_critic=True --frames_stacked=4"

Note that to match the perforance presented in the paper it is required to use higher number of actors, e.g. 20.

StarCraft Multi-Agent Challange

We evaluate our models on the StarCraft Multi-Agent Challange benchmark (latest version, i.e. 4.10). The challange consists of 14 tasks: '2s_vs_1sc', '2s3z', '3s5z', '1c3s5z', '10m_vs_11m', '2c_vs_64zg', 'bane_vs_bane', '5m_vs_6m', '3s_vs_5z', '3s5z_vs_3s6z', '6h_vs_8z', '27m_vs_30m', 'MMM2' and 'corridor'.

To train on a chosen task, e.g. 'MMM2', add --task_name='MMM2' to configuration, e.g.

./run_local.sh starcraft vtrace 1 "--full_state_critic=False --task_name='MMM2'"

Results

Our model achieves the following performance on SMAC:

results.png

Tool for installing and updating MiSTer cores and other files

MiSTer Downloader This tool installs and updates all the cores and other extra files for your MiSTer. It also updates the menu core, the MiSTer firmwa

72 Dec 24, 2022
This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling

deSpeckNet-TF-GEE This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling publi

Adugna Mullissa 16 Sep 07, 2022
Seg-Torch for Image Segmentation with Torch

Seg-Torch for Image Segmentation with Torch This work was sparked by my personal research on simple segmentation methods based on deep learning. It is

Eren Gölge 37 Dec 12, 2022
Neural Network to colorize grayscale images

#colornet Neural Network to colorize grayscale images Results Grayscale Prediction Ground Truth Eiji K used colornet for anime colorization Sources Au

Pavel Hanchar 3.6k Dec 24, 2022
minimizer-space de Bruijn graphs (mdBG) for whole genome assembly

rust-mdbg: Minimizer-space de Bruijn graphs (mdBG) for whole-genome assembly rust-mdbg is an ultra-fast minimizer-space de Bruijn graph (mdBG) impleme

Barış Ekim 148 Dec 01, 2022
Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Single Optical Path

Keyhole Imaging Code & Dataset Code associated with the paper "Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Singl

Stanford Computational Imaging Lab 20 Feb 03, 2022
Quantum-enhanced transformer neural network

Example of a Quantum-enhanced transformer neural network Get the code: git clone https://github.com/rdisipio/qtransformer.git cd qtransformer Create

Riccardo Di Sipio 61 Nov 08, 2022
pytorch implementation of openpose including Hand and Body Pose Estimation.

pytorch-openpose pytorch implementation of openpose including Body and Hand Pose Estimation, and the pytorch model is directly converted from openpose

Hzzone 1.4k Jan 07, 2023
The code of "Dependency Learning for Legal Judgment Prediction with a Unified Text-to-Text Transformer".

Code data_preprocess.py: preprocess data for Dependent-T5. parameters.py: define parameters of Dependent-T5. train_tools.py: traning and evaluation co

1 Apr 21, 2022
Demos of essentia classifiers hosted on replicate.ai

essentia-replicate-demos Demos of Essentia models hosted on replicate.ai's MTG site. The models Check our site for a complete list of the models avail

Music Technology Group - Universitat Pompeu Fabra 12 Nov 14, 2022
Image augmentation library in Python for machine learning.

Augmentor is an image augmentation library in Python for machine learning. It aims to be a standalone library that is platform and framework independe

Marcus D. Bloice 4.8k Jan 07, 2023
Official implementation of "SinIR: Efficient General Image Manipulation with Single Image Reconstruction" (ICML 2021)

SinIR (Official Implementation) Requirements To install requirements: pip install -r requirements.txt We used Python 3.7.4 and f-strings which are in

47 Oct 11, 2022
Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.

Pretrain-Recsys This is our Tensorflow implementation for our WSDM 2021 paper: Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, Hong Chen. Pre-Training

30 Nov 14, 2022
The project covers common metrics for super-resolution performance evaluation.

Super-Resolution Performance Evaluation Code The project covers common metrics for super-resolution performance evaluation. Metrics support The script

xmy 10 Aug 03, 2022
[NeurIPS 2019] Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss

Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, Tengyu Ma This is the offi

Kaidi Cao 528 Jan 01, 2023
Multi-robot collaborative exploration and mapping through Voronoi partition and DRL in unknown environment

Voronoi Multi_Robot Collaborate Exploration Introduction In the unknown environment, the cooperative exploration of multiple robots is completed by Vo

PeaceWord 6 Nov 22, 2022
Official Pytorch implementation of "Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)

Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021) Official Pytorch implementation of Unbiased Classification

Youngkyu 17 Jan 01, 2023
Scaling Vision with Sparse Mixture of Experts

Scaling Vision with Sparse Mixture of Experts This repository contains the code for training and fine-tuning Sparse MoE models for vision (V-MoE) on I

Google Research 290 Dec 25, 2022
High accurate tool for automatic faces detection with landmarks

faces_detanator High accurate tool for automatic faces detection with landmarks. The library is based on public detectors with high accuracy (TinaFace

Ihar 7 May 10, 2022
PiRank: Learning to Rank via Differentiable Sorting

PiRank: Learning to Rank via Differentiable Sorting This repository provides a reference implementation for learning PiRank-based models as described

54 Dec 17, 2022