Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch

Overview

Perceiver - Pytorch

Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch

Install

$ pip install perceiver-pytorch

Usage

import torch
from perceiver_pytorch import Perceiver

model = Perceiver(
    num_fourier_features = 6,    # number of fourier features, with original value (2 * K + 1)
    depth = 48,                  # depth of net, in paper, they went deep, making up for lack of attention
    num_latents = 6,             # number of latents, or induced set points, or centroids. different papers giving it different names
    cross_dim = 512,             # cross attention dimension
    latent_dim = 512,            # latent dimension
    cross_heads = 1,             # number of heads for cross attention. paper said 1
    latent_heads = 8,            # number of heads for latent self attention, 8
    cross_dim_head = 64,
    latent_dim_head = 64,
    num_classes = 1000,          # output number of classes
    attn_dropout = 0.,
    ff_dropout = 0.,
    weight_tie_layers = False    # whether to weight tie layers (optional, as indicated in the diagram)
)

img = torch.randn(1, 224 * 224) # 1 imagenet image, pixelized

model(img) # (1, 1000)

Citations

@misc{jaegle2021perceiver,
    title   = {Perceiver: General Perception with Iterative Attention},
    author  = {Andrew Jaegle and Felix Gimeno and Andrew Brock and Andrew Zisserman and Oriol Vinyals and Joao Carreira},
    year    = {2021},
    eprint  = {2103.03206},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
Comments
  • Latent averaging to the logits?

    Latent averaging to the logits?

    I read through the paper last night and came away confused about a few things. I looked through your code hoping for some clarity.

    One issue that doesn't seem to be explained in the paper (or I am missing it) is how the authors go from a set of latents to the logits used at the classification head. You implemented this by taking the mean of the latent set:

    https://github.com/lucidrains/perceiver-pytorch/blob/main/perceiver_pytorch/perceiver_pytorch.py#L203

    Is this actually how the authors convert to logits?

    opened by neonbjb 7
  • PerceiverAR?

    PerceiverAR?

    Hey @lucidrains - love this repo, and still trying to wrap my head around the various difference between Perceiver architectures; how hard would it be to extend PerceiverIO to PerceiverAR; what fundamentally needs to change?

    opened by siddk 5
  • Not using the classification head in Perceiver

    Not using the classification head in Perceiver

    Hi @lucidrains, thank you for your great job!

    I'd like to use the Perceiver (not PerceiverIO) without the classification head (average and projection). Do you think we could add an option to avoid using it? I can do a PR if you want.

    Thanks!

    opened by gegallego 4
  • Decoder Attention Module needs a FF network as well in perceiver_io.py script

    Decoder Attention Module needs a FF network as well in perceiver_io.py script

    Hi,

    According to perceiver io paper's (https://arxiv.org/abs/2107.14795) architectural details, they mention that the decoder attention block contains a cross attention block (4), which is already implemented in the perceiver_io.py script (Line 151), followed by a Feedforward network, given by equation (6) in the paper, which is not present in that script. I am not aware of the repercussions of not having FF in the decoder module but it might be a good idea to have it in the implementation. Something like self.decoder_ff = PreNorm(FeedForward(queries_dim)) would do the job. Experimentally, the authors had found that omitting equation (5) is helpful.

    opened by Hritikbansal 4
  • Positional encoding are already part of the input

    Positional encoding are already part of the input

    Hello! First of all, thank you for this implementation.

    My inputs already have the proper positional encoding as part of the channel axis. Would it be possible to add a feature to deactivate the default implementation of the positional encoding?

    Thank you!

    opened by Atlis 4
  • x = self.latents + self.pos_emb

    x = self.latents + self.pos_emb

    self.latents = nn.Parameter(torch.randn(num_latents, latent_dim))
    self.pos_emb = nn.Parameter(torch.randn(num_latents, latent_dim))
    ...
    x = self.latents + self.pos_emb
    

    I'm not very familiar with pytorch, but does this make sense? I mean, what's intended when 2 trainable weight matrices are simply summed and that's that's the only place where both latents and pos_emb appear. It looks like it can be replaced with only one matrix.

    opened by galchinsky 4
  • Fourier encoding is not similar to the paper

    Fourier encoding is not similar to the paper

    First of all, thanks for sharing the code !

    I have a follow up question to #4.

    In the paper, the authors mentioned about [sin(f_kπx_d), cos(f_kπx_d)], where f_k is a bank of frequencies spaced log-linearly between 1 and µ/2. Can you maybe point out how you came to the 1/2**i scaling in the code ?

    https://github.com/lucidrains/perceiver-pytorch/blob/6ae733773d29cb29383f3ac7b45af8cb6bd2c0dc/perceiver_pytorch/perceiver_pytorch.py#L28-L35

    Thanks!

    opened by cheneeheng 4
  • Fourier encoding should be for position coordinates instead of byte array

    Fourier encoding should be for position coordinates instead of byte array

    The fourier_encode function as implemented takes as input a byte array x and directly encodes it with sin/cos before concating with the input.

    As I understand the NeRF position encodings, they encode the x/y/etc. position coordinates, and not a transformation of the data itself. From the Perceiver paper:

    We parametrize the frequency encoding to take the values [sin(fkπxd), cos(fkπxd)], where the frequencies fk is the kth band of a bank of frequencies spaced log-linearly between 1 and µ/2... For example, by allowing the network to resolve the maximum frequency present in an input array, we can encourage it to learn to compare the values of bytes at any positions in the input array. xd is the value of the input position along the dth dimension (e.g. for images d = 2 and for video d = 3). xd takes values in [−1, 1] for each dimension. We concatenate the raw positional value xd to produce the final representation of position. This results in a positional encoding of size d(2K + 1).

    NeRF position encoding examples:

    • https://github.com/bmild/nerf/blob/20a91e764a28816ee2234fcadb73bd59a613a44c/run_nerf_helpers.py#L22
    • https://github.com/ankurhanda/nerf2D
    opened by eridgd 4
  • Positional encoding frequency bands should be linearly spaced

    Positional encoding frequency bands should be linearly spaced

    A small bug, but as alluded to in this comment by @marcdumon, it seems as though the frequency bands are indeed spaced linearly in the official JAX implementation.

    opened by djl11 2
  • Bug in fourier_encode (?)

    Bug in fourier_encode (?)

    Thank you for this great implementation. I'm learning a lot from it!

    I think I found a problem in the fourier_encode method. In this line: https://github.com/lucidrains/perceiver-pytorch/blob/b33aced4e1b266aeb1383e03ab63f0a9951f9126/perceiver_pytorch/perceiver_pytorch.py#L36

    the scales are always the same whatever value of parameter base. Example:

    max_freq = 10, num_bands=6, base = 2
    => scales = [1.0000, 1.3797, 1.9037, 2.6265, 3.6239, 5.0000]
    
    max_freq = 10, num_bands=6, base = 10
    => scales = [1.0000, 1.3797, 1.9037, 2.6265, 3.6239, 5.0000]
    
    opened by marcdumon 2
  • Attention softmax is applied to incorrect dimension?

    Attention softmax is applied to incorrect dimension?

    I am studying multi-head attention. When I was reading through [1], I found that the attenion softmax is applied over the last dimension of the similarity tensor sim:

            q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = h), (q, k, v))
    
            sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
    
            if exists(mask):
                <removed>
    
            # attention, what we cannot get enough of
            attn = sim.softmax(dim = -1)
    

    If I understand correctly sim has the shape (b*h) n1 n2. The softmax is computed over the last dimension n2. Shouldn't the softmax be applied to matrices with all the similarity values of a single head (i.e. with shape n1, n2)?

    [1] https://github.com/lucidrains/perceiver-pytorch/blob/main/perceiver_pytorch/perceiver_io.py#L97

    opened by breuderink 2
  • Issue defining base in fourier_encode for experimental.py, gated.py, mixed_latents.py

    Issue defining base in fourier_encode for experimental.py, gated.py, mixed_latents.py

    Hey Lucid, love the work, it appears you deprecated base in fourier_encode at https://github.com/lucidrains/perceiver-pytorch/commit/144b0d9716a7212b5fd6d95a2267c4d4a08b56a7

    But experimental.py, gated.py, mixed_latents.py are still trying to define the base within the forward pass. https://github.com/lucidrains/perceiver-pytorch/blob/abbb5d5949d3509c57749bd134f5068f2761aac7/perceiver_pytorch/experimental.py#L122 https://github.com/lucidrains/perceiver-pytorch/blob/2d59df42ebb0b7538af77d584f5ae5b50759618b/perceiver_pytorch/mixed_latents.py#L85 https://github.com/lucidrains/perceiver-pytorch/blob/2d59df42ebb0b7538af77d584f5ae5b50759618b/perceiver_pytorch/gated.py#L103

    Thanks again, keep up the great work.

    opened by TannerLaBorde 0
  • Audio + Text data?

    Audio + Text data?

    Can someone please guide me on how you can process both audio and .txt data through perceiver simultaneously for multimodality learning?

    An example code would be nice.

    Thanks

    opened by Sidz1812 1
  • just a suggestion

    just a suggestion

    Hi I like to start with thanking you for such a great work with a lot of great implementations. I have a small suggestion. I suggest for all your codes/modules try to add if __name__ == "__main__": so that if someone just wants to use one file/module can easily try that without having going through whole implementations. for example I am trying to use the this, in case of having a if __name__ == "__main__": I can easily try to run a random input and see how it will work. This will increase the usability with a huge amount.

    Keep up the great work :)

    opened by seyeeet 4
  • What should I change if I want to use data with input size 720*184

    What should I change if I want to use data with input size 720*184

    thanks for sharing this code, I was wondering what should I change if I want to be able to use data that can be converted into images with an input size of 720*184? thanks in advance

    opened by Oussamab21 0
  • Question regarding queries dimensionality in Perceiver IO

    Question regarding queries dimensionality in Perceiver IO

    Hi @lucidrains,

    I think I may be missing something - why do we define the perceiver IO queries vector to have a batch dimension (i.e. queries = torch.randn(1, 128, 32))? Was this just to make the code work nicely? Shouldnt we be using queries = torch.randn(128, 32) ? I expect to use the same embedding for all of my batch elements, which is IIUC what your code is doing.

    opened by pcicales 3
Releases(0.8.6)
Owner
Phil Wang
Working with Attention. It's all we need.
Phil Wang
Prometheus exporter for Cisco Unified Computing System (UCS) Manager

prometheus-ucs-exporter Overview Use metrics from the UCS API to export relevant metrics to Prometheus This repository is a fork of Drew Stinnett's or

Marshall Wace 6 Nov 07, 2022
Code accompanying the NeurIPS 2021 paper "Generating High-Quality Explanations for Navigation in Partially-Revealed Environments"

Generating High-Quality Explanations for Navigation in Partially-Revealed Environments This work presents an approach to explainable navigation under

RAIL Group @ George Mason University 1 Oct 28, 2022
Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

ResMLP - Pytorch Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch Install $ pip install res-mlp-py

Phil Wang 178 Dec 02, 2022
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Trevor Ablett*, Bryan Chan*,

STARS Laboratory 8 Sep 14, 2022
This is the official implementation of our proposed SwinMR

SwinMR This is the official implementation of our proposed SwinMR: Swin Transformer for Fast MRI Please cite: @article{huang2022swin, title={Swi

A Yang Lab (led by Dr Guang Yang) 27 Nov 17, 2022
pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models.

pcnaDeep: a deep-learning based single-cell cycle profiler with PCNA signal Welcome! pcnaDeep integrates cutting-edge detection techniques with tracki

ChanLab 8 Oct 18, 2022
Active window border replacement for window managers.

xborder Active window border replacement for window managers. Usage git clone https://github.com/deter0/xborder cd xborder chmod +x xborders ./xborder

deter 250 Dec 30, 2022
UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus General info This is

71 Oct 25, 2022
FinEAS: Financial Embedding Analysis of Sentiment 📈

FinEAS: Financial Embedding Analysis of Sentiment 📈 (SentenceBERT for Financial News Sentiment Regression) This repository contains the code for gene

LHF Labs 31 Dec 13, 2022
Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation

Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation The code of: Context Decoupling Augmentation for Weakly Supervised Semanti

54 Dec 12, 2022
Multi Agent Reinforcement Learning for ROS in 2D Simulation Environments

IROS21 information To test the code and reproduce the experiments, follow the installation steps in Installation.md. Afterwards, follow the steps in E

11 Oct 29, 2022
My freqtrade strategies

My freqtrade-strategies Hi there! This is repo for my freqtrade-strategies. My name is Ilya Zelenchuk, I'm a lecturer at the SPbU university (https://

171 Dec 05, 2022
PyGCL: Graph Contrastive Learning Library for PyTorch

PyGCL: Graph Contrastive Learning for PyTorch PyGCL is an open-source library for graph contrastive learning (GCL), which features modularized GCL com

GCL: Graph Contrastive Learning Library for PyTorch 594 Jan 08, 2023
Parallel and High-Fidelity Text-to-Lip Generation; AAAI 2022 ; Official code

Parallel and High-Fidelity Text-to-Lip Generation This repository is the official PyTorch implementation of our AAAI-2022 paper, in which we propose P

Zhying 77 Dec 21, 2022
MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation

MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation This repo is the official implementation of "MHFormer: Multi-Hypothesis Transforme

Vegetabird 281 Jan 07, 2023
A big endian Gentoo port developed on a Pine64.org RockPro64

Gentoo-aarch64_be A big endian Gentoo port developed on a Pine64.org RockPro64 The endian wars are over... little endian won. As a result, it is incre

Rory Bolt 6 Dec 07, 2022
Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONNX.

ONNX-HybridNets-Multitask-Road-Detection Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONN

Ibai Gorordo 45 Jan 01, 2023
B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search

B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search This is the offical implementation of the

SNU ADSL 0 Feb 07, 2022
Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Jina AI 794 Dec 31, 2022
Dilated Convolution for Semantic Image Segmentation

Multi-Scale Context Aggregation by Dilated Convolutions Introduction Properties of dilated convolution are discussed in our ICLR 2016 conference paper

Fisher Yu 764 Dec 26, 2022