Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch

Overview

Perceiver - Pytorch

Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch

Install

$ pip install perceiver-pytorch

Usage

import torch
from perceiver_pytorch import Perceiver

model = Perceiver(
    num_fourier_features = 6,    # number of fourier features, with original value (2 * K + 1)
    depth = 48,                  # depth of net, in paper, they went deep, making up for lack of attention
    num_latents = 6,             # number of latents, or induced set points, or centroids. different papers giving it different names
    cross_dim = 512,             # cross attention dimension
    latent_dim = 512,            # latent dimension
    cross_heads = 1,             # number of heads for cross attention. paper said 1
    latent_heads = 8,            # number of heads for latent self attention, 8
    cross_dim_head = 64,
    latent_dim_head = 64,
    num_classes = 1000,          # output number of classes
    attn_dropout = 0.,
    ff_dropout = 0.,
    weight_tie_layers = False    # whether to weight tie layers (optional, as indicated in the diagram)
)

img = torch.randn(1, 224 * 224) # 1 imagenet image, pixelized

model(img) # (1, 1000)

Citations

@misc{jaegle2021perceiver,
    title   = {Perceiver: General Perception with Iterative Attention},
    author  = {Andrew Jaegle and Felix Gimeno and Andrew Brock and Andrew Zisserman and Oriol Vinyals and Joao Carreira},
    year    = {2021},
    eprint  = {2103.03206},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
Comments
  • Latent averaging to the logits?

    Latent averaging to the logits?

    I read through the paper last night and came away confused about a few things. I looked through your code hoping for some clarity.

    One issue that doesn't seem to be explained in the paper (or I am missing it) is how the authors go from a set of latents to the logits used at the classification head. You implemented this by taking the mean of the latent set:

    https://github.com/lucidrains/perceiver-pytorch/blob/main/perceiver_pytorch/perceiver_pytorch.py#L203

    Is this actually how the authors convert to logits?

    opened by neonbjb 7
  • PerceiverAR?

    PerceiverAR?

    Hey @lucidrains - love this repo, and still trying to wrap my head around the various difference between Perceiver architectures; how hard would it be to extend PerceiverIO to PerceiverAR; what fundamentally needs to change?

    opened by siddk 5
  • Not using the classification head in Perceiver

    Not using the classification head in Perceiver

    Hi @lucidrains, thank you for your great job!

    I'd like to use the Perceiver (not PerceiverIO) without the classification head (average and projection). Do you think we could add an option to avoid using it? I can do a PR if you want.

    Thanks!

    opened by gegallego 4
  • Decoder Attention Module needs a FF network as well in perceiver_io.py script

    Decoder Attention Module needs a FF network as well in perceiver_io.py script

    Hi,

    According to perceiver io paper's (https://arxiv.org/abs/2107.14795) architectural details, they mention that the decoder attention block contains a cross attention block (4), which is already implemented in the perceiver_io.py script (Line 151), followed by a Feedforward network, given by equation (6) in the paper, which is not present in that script. I am not aware of the repercussions of not having FF in the decoder module but it might be a good idea to have it in the implementation. Something like self.decoder_ff = PreNorm(FeedForward(queries_dim)) would do the job. Experimentally, the authors had found that omitting equation (5) is helpful.

    opened by Hritikbansal 4
  • Positional encoding are already part of the input

    Positional encoding are already part of the input

    Hello! First of all, thank you for this implementation.

    My inputs already have the proper positional encoding as part of the channel axis. Would it be possible to add a feature to deactivate the default implementation of the positional encoding?

    Thank you!

    opened by Atlis 4
  • x = self.latents + self.pos_emb

    x = self.latents + self.pos_emb

    self.latents = nn.Parameter(torch.randn(num_latents, latent_dim))
    self.pos_emb = nn.Parameter(torch.randn(num_latents, latent_dim))
    ...
    x = self.latents + self.pos_emb
    

    I'm not very familiar with pytorch, but does this make sense? I mean, what's intended when 2 trainable weight matrices are simply summed and that's that's the only place where both latents and pos_emb appear. It looks like it can be replaced with only one matrix.

    opened by galchinsky 4
  • Fourier encoding is not similar to the paper

    Fourier encoding is not similar to the paper

    First of all, thanks for sharing the code !

    I have a follow up question to #4.

    In the paper, the authors mentioned about [sin(f_kπx_d), cos(f_kπx_d)], where f_k is a bank of frequencies spaced log-linearly between 1 and µ/2. Can you maybe point out how you came to the 1/2**i scaling in the code ?

    https://github.com/lucidrains/perceiver-pytorch/blob/6ae733773d29cb29383f3ac7b45af8cb6bd2c0dc/perceiver_pytorch/perceiver_pytorch.py#L28-L35

    Thanks!

    opened by cheneeheng 4
  • Fourier encoding should be for position coordinates instead of byte array

    Fourier encoding should be for position coordinates instead of byte array

    The fourier_encode function as implemented takes as input a byte array x and directly encodes it with sin/cos before concating with the input.

    As I understand the NeRF position encodings, they encode the x/y/etc. position coordinates, and not a transformation of the data itself. From the Perceiver paper:

    We parametrize the frequency encoding to take the values [sin(fkπxd), cos(fkπxd)], where the frequencies fk is the kth band of a bank of frequencies spaced log-linearly between 1 and µ/2... For example, by allowing the network to resolve the maximum frequency present in an input array, we can encourage it to learn to compare the values of bytes at any positions in the input array. xd is the value of the input position along the dth dimension (e.g. for images d = 2 and for video d = 3). xd takes values in [−1, 1] for each dimension. We concatenate the raw positional value xd to produce the final representation of position. This results in a positional encoding of size d(2K + 1).

    NeRF position encoding examples:

    • https://github.com/bmild/nerf/blob/20a91e764a28816ee2234fcadb73bd59a613a44c/run_nerf_helpers.py#L22
    • https://github.com/ankurhanda/nerf2D
    opened by eridgd 4
  • Positional encoding frequency bands should be linearly spaced

    Positional encoding frequency bands should be linearly spaced

    A small bug, but as alluded to in this comment by @marcdumon, it seems as though the frequency bands are indeed spaced linearly in the official JAX implementation.

    opened by djl11 2
  • Bug in fourier_encode (?)

    Bug in fourier_encode (?)

    Thank you for this great implementation. I'm learning a lot from it!

    I think I found a problem in the fourier_encode method. In this line: https://github.com/lucidrains/perceiver-pytorch/blob/b33aced4e1b266aeb1383e03ab63f0a9951f9126/perceiver_pytorch/perceiver_pytorch.py#L36

    the scales are always the same whatever value of parameter base. Example:

    max_freq = 10, num_bands=6, base = 2
    => scales = [1.0000, 1.3797, 1.9037, 2.6265, 3.6239, 5.0000]
    
    max_freq = 10, num_bands=6, base = 10
    => scales = [1.0000, 1.3797, 1.9037, 2.6265, 3.6239, 5.0000]
    
    opened by marcdumon 2
  • Attention softmax is applied to incorrect dimension?

    Attention softmax is applied to incorrect dimension?

    I am studying multi-head attention. When I was reading through [1], I found that the attenion softmax is applied over the last dimension of the similarity tensor sim:

            q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = h), (q, k, v))
    
            sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
    
            if exists(mask):
                <removed>
    
            # attention, what we cannot get enough of
            attn = sim.softmax(dim = -1)
    

    If I understand correctly sim has the shape (b*h) n1 n2. The softmax is computed over the last dimension n2. Shouldn't the softmax be applied to matrices with all the similarity values of a single head (i.e. with shape n1, n2)?

    [1] https://github.com/lucidrains/perceiver-pytorch/blob/main/perceiver_pytorch/perceiver_io.py#L97

    opened by breuderink 2
  • Issue defining base in fourier_encode for experimental.py, gated.py, mixed_latents.py

    Issue defining base in fourier_encode for experimental.py, gated.py, mixed_latents.py

    Hey Lucid, love the work, it appears you deprecated base in fourier_encode at https://github.com/lucidrains/perceiver-pytorch/commit/144b0d9716a7212b5fd6d95a2267c4d4a08b56a7

    But experimental.py, gated.py, mixed_latents.py are still trying to define the base within the forward pass. https://github.com/lucidrains/perceiver-pytorch/blob/abbb5d5949d3509c57749bd134f5068f2761aac7/perceiver_pytorch/experimental.py#L122 https://github.com/lucidrains/perceiver-pytorch/blob/2d59df42ebb0b7538af77d584f5ae5b50759618b/perceiver_pytorch/mixed_latents.py#L85 https://github.com/lucidrains/perceiver-pytorch/blob/2d59df42ebb0b7538af77d584f5ae5b50759618b/perceiver_pytorch/gated.py#L103

    Thanks again, keep up the great work.

    opened by TannerLaBorde 0
  • Audio + Text data?

    Audio + Text data?

    Can someone please guide me on how you can process both audio and .txt data through perceiver simultaneously for multimodality learning?

    An example code would be nice.

    Thanks

    opened by Sidz1812 1
  • just a suggestion

    just a suggestion

    Hi I like to start with thanking you for such a great work with a lot of great implementations. I have a small suggestion. I suggest for all your codes/modules try to add if __name__ == "__main__": so that if someone just wants to use one file/module can easily try that without having going through whole implementations. for example I am trying to use the this, in case of having a if __name__ == "__main__": I can easily try to run a random input and see how it will work. This will increase the usability with a huge amount.

    Keep up the great work :)

    opened by seyeeet 4
  • What should I change if I want to use data with input size 720*184

    What should I change if I want to use data with input size 720*184

    thanks for sharing this code, I was wondering what should I change if I want to be able to use data that can be converted into images with an input size of 720*184? thanks in advance

    opened by Oussamab21 0
  • Question regarding queries dimensionality in Perceiver IO

    Question regarding queries dimensionality in Perceiver IO

    Hi @lucidrains,

    I think I may be missing something - why do we define the perceiver IO queries vector to have a batch dimension (i.e. queries = torch.randn(1, 128, 32))? Was this just to make the code work nicely? Shouldnt we be using queries = torch.randn(128, 32) ? I expect to use the same embedding for all of my batch elements, which is IIUC what your code is doing.

    opened by pcicales 3
Releases(0.8.6)
Owner
Phil Wang
Working with Attention. It's all we need.
Phil Wang
Makes patches from huge resolution .svs slide files using openslide

openslide_patcher Makes patches from huge resolution .svs slide files using openslide Example collage I made from outputs:

2 Dec 23, 2021
Riemann Noise Injection With PyTorch

Riemann Noise Injection - PyTorch A module for modeling GAN noise injection based on Riemann geometry, as described in Ruili Feng, Deli Zhao, and Zhen

2 May 27, 2022
Unoffical implementation about Image Super-Resolution via Iterative Refinement by Pytorch

Image Super-Resolution via Iterative Refinement Paper | Project Brief This is a unoffical implementation about Image Super-Resolution via Iterative Re

LiangWei Jiang 2.5k Jan 02, 2023
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022; Official code

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 803 Dec 28, 2022
EGNN - Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch

EGNN - Pytorch Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch. May be eventually used for Alphafold2 replication. This

Phil Wang 259 Jan 04, 2023
Callable PyTrees and filtered JIT/grad transformations => neural networks in JAX.

Equinox Callable PyTrees and filtered JIT/grad transformations = neural networks in JAX Equinox brings more power to your model building in JAX. Repr

Patrick Kidger 909 Dec 30, 2022
Lbl2Vec learns jointly embedded label, document and word vectors to retrieve documents with predefined topics from an unlabeled document corpus.

Lbl2Vec Lbl2Vec is an algorithm for unsupervised document classification and unsupervised document retrieval. It automatically generates jointly embed

sebis - TUM - Germany 61 Dec 20, 2022
realsense d400 -> jpg + csv

Realsense-capture realsense d400 - jpg + csv Requirements RealSense sdk : Installation Python3 pyrealsense2 (RealSense SDK) Numpy OpenCV Tkinter Run

Ar-Ray 2 Mar 22, 2022
Fuwa-http - The http client implementation for the fuwa eco-system

Fuwa HTTP The HTTP client implementation for the fuwa eco-system Example import

Fuwa 2 Feb 16, 2022
Learning to Predict Gradients for Semi-Supervised Continual Learning

Learning to Predict Gradients for Semi-Supervised Continual Learning Code for project: "Learning to Predict Gradients for Semi-Supervised Continual Le

Yan Luo 2 Mar 05, 2022
UV matrix decompostion using movielens dataset

UV-matrix-decompostion-with-kfold UV matrix decompostion using movielens dataset upload the 'ratings.dat' file install the following python libraries

2 Oct 18, 2022
moving object detection for satellite videos.

DSFNet: Dynamic and Static Fusion Network for Moving Object Detection in Satellite Videos Algorithm Introduction DSFNet: Dynamic and Static Fusion Net

xiaochao 39 Dec 16, 2022
Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021.

SphereRPN Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021. Authors: Th

Thang Vu 15 Dec 02, 2022
An implementation of RetinaNet in PyTorch.

RetinaNet An implementation of RetinaNet in PyTorch. Installation Training COCO 2017 Pascal VOC Custom Dataset Evaluation Todo Credits Installation In

Conner Vercellino 297 Jan 04, 2023
Autonomous racing with the Anki Overdrive

Anki Autonomous Racing Autonomous racing with the Anki Overdrive. Using the Overdrive-Python API (https://github.com/xerodotc/overdrive-python) develo

3 Dec 11, 2022
Playable Video Generation

Playable Video Generation Playable Video Generation Willi Menapace, Stéphane Lathuilière, Sergey Tulyakov, Aliaksandr Siarohin, Elisa Ricci Paper: ArX

Willi Menapace 136 Dec 31, 2022
🌎 The Modern Declarative Data Flow Framework for the AI Empowered Generation.

🌎 JSONClasses JSONClasses is a declarative data flow pipeline and data graph framework. Official Website: https://www.jsonclasses.com Official Docume

Fillmula Inc. 53 Dec 09, 2022
In this project I played with mlflow, streamlit and fastapi to create a training and prediction app on digits

Fastapi + MLflow + streamlit Setup env. I hope I covered all. pip install -r requirements.txt Start app Go in the root dir and run these Streamlit str

76 Nov 23, 2022
Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechanism

Period-alternatives-of-Softmax Experimental Demo for our paper 'Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechani

slwang9353 0 Sep 06, 2021
Differentiable Factor Graph Optimization for Learning Smoothers @ IROS 2021

Differentiable Factor Graph Optimization for Learning Smoothers Overview Status Setup Datasets Training Evaluation Acknowledgements Overview Code rele

Brent Yi 60 Nov 14, 2022