Image classification for projects and researches

Overview

Python 3.7 Python 3.8 MIT License Coverage

KERAS CLASSIFY

Image classification for projects and researches

About The Project

Image classification is a commonly used problem in the experimental part of scientific papers and also frequently appears as part of the projects. With the desire to reduce time and effort, Keras Classify was created.

Getting Started

Installation

  1. Clone the repo: https://github.com/nguyentruonglau/keras-classify.git

  2. Install packages

    > python -m venv 
         
          
    > activate.bat (in scripts folder)
    > pip install -r requirements.txt
    
         

Todo List:

  • Cosine learning rate scheduler
  • Gradient-based Localization
  • Sota models
  • Synthetic data
  • Smart Resize
  • Support Python 3.X and Tf 2.X
  • Use imagaug for augmentation data
  • Use prefetching and multiprocessing to training.
  • Analysis Of Input Shape
  • Compiled using XLA, auto-clustering on GPU
  • Receiver operating characteristic

Quick Start

Analysis Of Input Shape

If your data has random input_shape, you don't know which input_shape to choose, the analysis program is the right choice for you. The algorithm is applied to analyze: Kernel Density Estimation.

Convert Data

From tensorflow 2.3.x already support auto fit_generator, however moving the data to npy file will make it easier to manage. The algorithm is applied to shuffle data: Random Permutation. Read more here.

Run: python convert/convert_npy.py

Training Model.

Design your model at model/models.py, we have made EfficientNetB0 the default. Adjust the appropriate hyperparameters and run: python train.py

Evaluate Model.

  • Statistics number of images per class after suffle on test data.

  • Provide model evalution indicators such as: Accuracy, Precesion, Recall, F1-Score and AUC (Area Under the Curve).

  • Plot training history of Accuracy, Loss, Receiver Operating Characteristic curve and Confusion Matrix.

Explainable AI.

Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization. "We propose a technique for producing 'visual explanations' for decisions from a large class of CNN-based models, making them more transparent" Ramprasaath R. Selvaraju ... Read more here.

Example Code

Use for projects

from keras.preprocessing.image import load_img, img_to_array
from keras.preprocessing.image import smart_resize
from tensorflow.keras.models import load_model
import tensorflow as tf
import numpy as np

#load pretrained model
model_path = 'data/output/model/val_accuracy_max.h5'
model = load_model(model_path)

#load data
img_path = 'images/images.jpg'
img = load_img(img_path)
img = img_to_array(img)
img = smart_resize(img, (72,72)) #resize to HxW
img = np.expand_dims(img, axis=0)

#prediction
y_pred = model.predict(img)
y_pred = np.argmax(y_pred, axis=1)

#see convert/output/label_decode.json
print(y_pred)

Smart resize (tf < 2.4.1)

from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.preprocessing.image load_img
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import image_ops
import numpy as np

def smart_resize(img, new_size, interpolation='bilinear'):
    """Resize images to a target size without aspect ratio distortion.

    Arguments:
      img (3D array): image data
      new_size (tuple): HxW

    Returns:
      [3D array]: image after resize
    """
    # Get infor of the image
    height, width, _ = img.shape
    target_height, target_width = new_size

    crop_height = (width * target_height) // target_width
    crop_width = (height * target_width) // target_height

    # Set back to input height / width if crop_height / crop_width is not smaller.
    crop_height = np.min([height, crop_height])
    crop_width = np.min([width, crop_width])

    crop_box_hstart = (height - crop_height) // 2
    crop_box_wstart = (width - crop_width) // 2

    # Infor to resize image
    crop_box_start = array_ops.stack([crop_box_hstart, crop_box_wstart, 0])
    crop_box_size = array_ops.stack([crop_height, crop_width, -1])

    img = array_ops.slice(img, crop_box_start, crop_box_size)
    img = image_ops.resize_images_v2(
        images=img,
        size=new_size,
        method=interpolation)
    return img.numpy()

Contributor

  1. BS Nguyen Truong Lau ([email protected])
  2. PhD Thai Trung Hieu ([email protected])

License

Distributed under the MIT License. See LICENSE for more information.

You might also like...
An end-to-end PyTorch framework for image and video classification
An end-to-end PyTorch framework for image and video classification

What's New: March 2021: Added RegNetZ models November 2020: Vision Transformers now available, with training recipes! 2020-11-20: Classy Vision v0.5 R

Scripts for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification
Scripts for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification

About subwAI subwAI - a project for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation

PyTorch implementation of our method for adversarial attacks and defenses in hyperspectral image classification.
PyTorch implementation of our method for adversarial attacks and defenses in hyperspectral image classification.

Self-Attention Context Network for Hyperspectral Image Classification PyTorch implementation of our method for adversarial attacks and defenses in hyp

Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network

Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto

A PyTorch Image-Classification With AlexNet And ResNet50.

PyTorch 图像分类 依赖库的下载与安装 在终端中执行 pip install -r -requirements.txt 完成项目依赖库的安装 使用方式 数据集的准备 STL10 数据集 下载:STL-10 Dataset 存储位置:将下载后的数据集中 train_X.bin,train_y.b

CNN Based Meta-Learning for Noisy Image Classification and Template Matching

CNN Based Meta-Learning for Noisy Image Classification and Template Matching Introduction This master thesis used a few-shot meta learning approach to

Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion

CSF Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion Tips: For testing: CUDA_VISIBLE_DEVICES=0 python main.py For trai

A python-image-classification web application project, written in Python and served through the Flask Microframework
A python-image-classification web application project, written in Python and served through the Flask Microframework

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and Tensorflow wrappers, to make predictions on uploaded images.

All the essential resources and template code needed to understand and practice data structures and algorithms in python with few small projects to demonstrate their practical application.

Data Structures and Algorithms Python INDEX 1. Resources - Books Data Structures - Reema Thareja competitiveCoding Big-O Cheat Sheet DAA Syllabus Inte

Releases(v1.0.0)
Owner
Nguyễn Trường Lâu
AI Researcher at FPT Software
Nguyễn Trường Lâu
An official PyTorch implementation of the TKDE paper "Self-Supervised Graph Representation Learning via Topology Transformations".

Self-Supervised Graph Representation Learning via Topology Transformations This repository is the official PyTorch implementation of the following pap

Hsiang Gao 2 Oct 31, 2022
SPT_LSA_ViT - Implementation for Visual Transformer for Small-size Datasets

Vision Transformer for Small-Size Datasets Seung Hoon Lee and Seunghyun Lee and Byung Cheol Song | Paper Inha University Abstract Recently, the Vision

Lee SeungHoon 87 Jan 01, 2023
Sionna: An Open-Source Library for Next-Generation Physical Layer Research

Sionna: An Open-Source Library for Next-Generation Physical Layer Research Sionna™ is an open-source Python library for link-level simulations of digi

NVIDIA Research Projects 313 Dec 22, 2022
Official Implementation of 'UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers' ICLR 2021(spotlight)

UPDeT Official Implementation of UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers (ICLR 2021 spotlight) The

hhhusiyi 96 Dec 22, 2022
This repository lets you interact with Lean through a REPL.

lean-gym This repository lets you interact with Lean through a REPL. See Formal Mathematics Statement Curriculum Learning for a presentation of lean-g

OpenAI 87 Dec 28, 2022
Implementation of "Efficient Regional Memory Network for Video Object Segmentation" (Xie et al., CVPR 2021).

RMNet This repository contains the source code for the paper Efficient Regional Memory Network for Video Object Segmentation. Cite this work @inprocee

Haozhe Xie 76 Dec 14, 2022
CVPR2022 (Oral) - Rethinking Semantic Segmentation: A Prototype View

Rethinking Semantic Segmentation: A Prototype View Rethinking Semantic Segmentation: A Prototype View, Tianfei Zhou, Wenguan Wang, Ender Konukoglu and

Tianfei Zhou 239 Dec 26, 2022
Dynamic Graph Event Detection

DyGED Dynamic Graph Event Detection Get Started pip install -r requirements.txt TODO Paper link to arxiv, and how to cite. Twitter Weather dataset tra

Mert Koşan 3 May 09, 2022
Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER 🦌 🦒 Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEE

33 Dec 23, 2022
Negative Sample is Negative in Its Own Way: Tailoring Negative Sentences forImage-Text Retrieval

NSGDC Some codes in this repo are copied/modified from opensource implementations made available by UNITER, PyTorch, HuggingFace, OpenNMT, and Nvidia.

Zhihao Fan 2 Nov 07, 2022
Transport Mode detection - can detect the mode of transport with the help of features such as acceeration,jerk etc

title emoji colorFrom colorTo sdk app_file pinned Transport_Mode_Detector 🚀 purple yellow gradio app.py false Configuration title: string Display tit

Nishant Rajadhyaksha 3 Jan 16, 2022
Malware Analysis Neural Network project.

MalanaNeuralNetwork Description Malware Analysis Neural Network project. Table of Contents Getting Started Requirements Installation Clone Set-Up VENV

2 Nov 13, 2021
Fully convolutional deep neural network to remove transparent overlays from images

Fully convolutional deep neural network to remove transparent overlays from images

Marc Belmont 1.1k Jan 06, 2023
Personals scripts using ageitgey/face_recognition

HOW TO USE pip3 install requirements.txt Add some pictures of known people in the folder 'people' : a) Create a folder called by the name of the perso

Antoine Bollengier 1 Jan 06, 2022
a practicable framework used in Deep Learning. So far UDL only provide DCFNet implementation for the ICCV paper (Dynamic Cross Feature Fusion for Remote Sensing Pansharpening)

UDL UDL is a practicable framework used in Deep Learning (computer vision). Benchmark codes, results and models are available in UDL, please contact @

Xiao Wu 11 Sep 30, 2022
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

timeseriesAI 2.8k Jan 08, 2023
Blender Python - Node-based multi-line text and image flowchart

MindMapper v0.8 Node-based text and image flowchart for Blender Mindmap with shortcuts visible: Mindmap with shortcuts hidden: Notes This was requeste

SpectralVectors 58 Oct 08, 2022
AutoDeeplab / auto-deeplab / AutoML for semantic segmentation, implemented in Pytorch

AutoML for Image Semantic Segmentation Currently this repo contains the only working open-source implementation of Auto-Deeplab which, by the way out-

AI Necromancer 299 Dec 17, 2022
A system used to detect whether a person is wearing a medical mask or not.

Mask_Detection_System A system used to detect whether a person is wearing a medical mask or not. To open the program, please follow these steps: Make

Mohamed Emad 0 Nov 17, 2022
PyTorch implementation of the cross-modality generative model that synthesizes dance from music.

Dancing to Music PyTorch implementation of the cross-modality generative model that synthesizes dance from music. Paper Hsin-Ying Lee, Xiaodong Yang,

NVIDIA Research Projects 485 Dec 26, 2022