PyTorch implementation of Super SloMo by Jiang et al.

Overview

Super-SloMo MIT Licence

PyTorch implementation of "Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation" by Jiang H., Sun D., Jampani V., Yang M., Learned-Miller E. and Kautz J. [Project] [Paper]

Check out our paper "Deep Slow Motion Video Reconstruction with Hybrid Imaging System" published in TPAMI.

Results

Results on UCF101 dataset using the evaluation script provided by paper's author. The get_results_bug_fixed.sh script was used. It uses motions masks when calculating PSNR, SSIM and IE.

Method PSNR SSIM IE
DVF 29.37 0.861 16.37
SepConv - L_1 30.18 0.875 15.54
SepConv - L_F 30.03 0.869 15.78
SuperSloMo_Adobe240fps 29.80 0.870 15.68
pretrained mine 29.77 0.874 15.58
SuperSloMo 30.22 0.880 15.18

Prerequisites

This codebase was developed and tested with pytorch 0.4.1 and CUDA 9.2 and Python 3.6. Install:

For GPU, run

conda install pytorch=0.4.1 cuda92 torchvision==0.2.0 -c pytorch

For CPU, run

conda install pytorch-cpu=0.4.1 torchvision-cpu==0.2.0 cpuonly -c pytorch

Training

Preparing training data

In order to train the model using the provided code, the data needs to be formatted in a certain manner. The create_dataset.py script uses ffmpeg to extract frames from videos.

Adobe240fps

For adobe240fps, download the dataset, unzip it and then run the following command

python data\create_dataset.py --ffmpeg_dir path\to\folder\containing\ffmpeg --videos_folder path\to\adobe240fps\videoFolder --dataset_folder path\to\dataset --dataset adobe240fps

Custom

For custom dataset, run the following command

python data\create_dataset.py --ffmpeg_dir path\to\folder\containing\ffmpeg --videos_folder path\to\adobe240fps\videoFolder --dataset_folder path\to\dataset

The default train-test split is 90-10. You can change that using command line argument --train_test_split.

Run the following commmand for help / more info

python data\create_dataset.py --h

Training

In the train.ipynb, set the parameters (dataset path, checkpoint directory, etc.) and run all the cells.

or to train from terminal, run:

python train.py --dataset_root path\to\dataset --checkpoint_dir path\to\save\checkpoints

Run the following commmand for help / more options like continue from checkpoint, progress frequency etc.

python train.py --h

Tensorboard

To get visualization of the training, you can run tensorboard from the project directory using the command:

tensorboard --logdir log --port 6007

and then go to https://localhost:6007.

Evaluation

Pretrained model

You can download the pretrained model trained on adobe240fps dataset here.

Video Converter

You can convert any video to a slomo or high fps video (or both) using video_to_slomo.py. Use the command

# Windows
python video_to_slomo.py --ffmpeg path\to\folder\containing\ffmpeg --video path\to\video.mp4 --sf N --checkpoint path\to\checkpoint.ckpt --fps M --output path\to\output.mkv

# Linux
python video_to_slomo.py --video path\to\video.mp4 --sf N --checkpoint path\to\checkpoint.ckpt --fps M --output path\to\output.mkv

If you want to convert a video from 30fps to 90fps set fps to 90 and sf to 3 (to get 3x frames than the original video).

Run the following commmand for help / more info

python video_to_slomo.py --h

You can also use eval.py if you do not want to use ffmpeg. You will instead need to install opencv-python using pip for video IO. A sample usage would be:

python eval.py data/input.mp4 --checkpoint=data/SuperSloMo.ckpt --output=data/output.mp4 --scale=4

Use python eval.py --help for more details

More info TBA

References:

Parts of the code is based on TheFairBear/Super-SlowMo

Owner
Avinash Paliwal
PhD Student at Texas A&M University
Avinash Paliwal
Predictive AI layer for existing databases.

MindsDB is an open-source AI layer for existing databases that allows you to effortlessly develop, train and deploy state-of-the-art machine learning

MindsDB Inc 12.2k Jan 03, 2023
Implementation for the paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR2021).

Invertible Image Denoising This is the PyTorch implementation of paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR 20

157 Dec 25, 2022
[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

LBYL-Net This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021. Getting Started Prerequ

SVIP Lab 45 Dec 12, 2022
This project provides a stock market environment using OpenGym with Deep Q-learning and Policy Gradient.

Stock Trading Market OpenAI Gym Environment with Deep Reinforcement Learning using Keras Overview This project provides a general environment for stoc

Kim, Ki Hyun 769 Dec 25, 2022
MIRACLE (Missing data Imputation Refinement And Causal LEarning)

MIRACLE (Missing data Imputation Refinement And Causal LEarning) Code Author: Trent Kyono This repository contains the code used for the "MIRACLE: Cau

van_der_Schaar \LAB 15 Dec 29, 2022
통일된 DataScience 폴더 구조 제공 및 가상환경 작업의 부담감 해소

Lucas coded by linux shell 목차 Mac버전 CookieCutter (autoenv) 1.How to Install autoenv 2.폴더 진입 시, activate 구현하기 3.폴더 탈출 시, deactivate 구현하기 4.Alias 설정하기 5

ello 3 Feb 21, 2022
Morphable Detector for Object Detection on Demand

Morphable Detector for Object Detection on Demand (ICCV 2021) PyTorch implementation of the paper Morphable Detector for Object Detection on Demand. I

9 Feb 23, 2022
Digan - Official PyTorch implementation of Generating Videos with Dynamics-aware Implicit Generative Adversarial Networks

DIGAN (ICLR 2022) Official PyTorch implementation of "Generating Videos with Dyn

Sihyun Yu 147 Dec 31, 2022
Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification

Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification Usage The required packages are lis

0 Feb 07, 2022
ICNet and PSPNet-50 in Tensorflow for real-time semantic segmentation

Real-Time Semantic Segmentation in TensorFlow Perform pixel-wise semantic segmentation on high-resolution images in real-time with Image Cascade Netwo

Oles Andrienko 219 Nov 21, 2022
Experiments on Flood Segmentation on Sentinel-1 SAR Imagery with Cyclical Pseudo Labeling and Noisy Student Training

Flood Detection Challenge This repository contains code for our submission to the ETCI 2021 Competition on Flood Detection (Winning Solution #2). Acco

Siddha Ganju 108 Dec 28, 2022
C3D is a modified version of BVLC caffe to support 3D ConvNets.

C3D C3D is a modified version of BVLC caffe to support 3D convolution and pooling. The main supporting features include: Training or fine-tuning 3D Co

Meta Archive 1.1k Nov 14, 2022
Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation

SUO-SLAM This repository hosts the code for our CVPR 2022 paper "Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation". ArXiv li

Robot Perception & Navigation Group (RPNG) 97 Jan 03, 2023
Tensorflow Implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (ICML 2017 workshop)

tf-SNDCGAN Tensorflow implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (https://www.researchgate.net/publicati

Nhat M. Nguyen 248 Nov 25, 2022
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
Edge Restoration Quality Assessment

ERQA - Edge Restoration Quality Assessment ERQA - a full-reference quality metric designed to analyze how good image and video restoration methods (SR

MSU Video Group 27 Dec 17, 2022
Parallel Latent Tree-Induction for Faster Sequence Encoding

FastTrees This repository contains the experimental code supporting the FastTrees paper by Bill Pung. Software Requirements Python 3.6, NLTK and PyTor

Bill Pung 4 Mar 29, 2022
Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Stephen James 51 Dec 27, 2022
Pytorch implementation of the unsupervised object discovery method LOST.

LOST Pytorch implementation of the unsupervised object discovery method LOST. More details can be found in the paper: Localizing Objects with Self-Sup

Valeo.ai 189 Dec 25, 2022