Morphable Detector for Object Detection on Demand

Overview

Morphable Detector for Object Detection on Demand

(ICCV 2021) PyTorch implementation of the paper Morphable Detector for Object Detection on Demand.

teaser

If our project is helpful for your research, please consider citing:

@inproceedings{zhaomorph,
  author  = {Xiangyun Zhao, Xu Zou, Ying Wu},
  title   = {Morphable Detector for Object Detection on Demand},
  booktitle = {ICCV},
  Year  = {2021}
}

Install

First, install PyTorch and torchvision. We have tested on version of 1.8.0 with CUDA 11.0, but the other versions should also be working.

Our code is based on maskrcnn-benchmark, so you should install all dependencies.

Data Preparation

Download large scale few detection dataset here and covert the data into COCO dataset format. The file structure should look like:

  $ tree data
  dataset
  ├──fsod
      ├── annototation
      │   
      ├── images

Training (EM-like approach)

We follow FSOD Paper to pretrain the model using COCO dataset for 200,000 iterations. So, you can download the COCO pretrain model here, and use it to initilize the network.

We first initialize the prototypes using semantic vectors, then train the network run:

export NGPUS=2
RND_PORT=`shuf -i 4000-7999 -n 1`

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --master_port $RND_PORT --nproc_per_node=$NGPUS ./tools/train_sem_net.py \
--config-file "./configs/fsod/e2e_faster_rcnn_R_50_FPN_1x.yaml"  OUTPUT_DIR "YOUR_OUTPUT_PATH" \
MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN  2000 SOLVER.IMS_PER_BATCH 4 SOLVER.MAX_ITER 270000 \
SOLVER.STEPS "(50000,70000)" SOLVER.CHECKPOINT_PERIOD 10000 \
SOLVER.BASE_LR 0.002  

Then, to update the prototypes, we first extract the features for the training samples by running:

export NGPUS=2
RND_PORT=`shuf -i 4000-7999 -n 1`

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --master_port $RND_PORT --nproc_per_node=$NGPUS \
./tools/train_sem_net.py --config-file "./configs/fsod/e2e_faster_rcnn_R_50_FPN_1x.yaml"  \ 
FEATURE_DIR "features" OUTPUT_DIR "WHERE_YOU_SAVE_YOUR_MODEL" \
FEATURE_SIZE 200 SEM_DIR "visual_sem.txt" GET_FEATURE True \
MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN  2000 \
SOLVER.IMS_PER_BATCH 4 SOLVER.MAX_ITER 80000 \
SOLVER.CHECKPOINT_PERIOD 10000000

To compute the mean vectors and update the prototypes, run

cd features

python mean_features.py FEATURE_FILE MEAN_FEATURE_FILE
python update_prototype.py MEAN_FEATURE_FILE

To train the network using the updated prototypes, run

export NGPUS=2
RND_PORT=`shuf -i 4000-7999 -n 1`

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --master_port $RND_PORT --nproc_per_node=$NGPUS \
./tools/train_sem_net.py --config-file "./configs/fsod/e2e_faster_rcnn_R_50_FPN_1x.yaml"  \
SEM_DIR "PATH_WHERE_YOU_SAVE_THE_PROTOTYPES" VISUAL True OUTPUT_DIR "WHERE_YOU_SAVE_YOUR_MODEL" \ 
MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN  2000 SOLVER.IMS_PER_BATCH 4 \
SOLVER.MAX_ITER 70000 SOLVER.STEPS "(50000,80000)" \
SOLVER.CHECKPOINT_PERIOD 10000 \
SOLVER.BASE_LR 0.002 

Tests

After the model is trained, we randomly sample 5 samples for each novel category from the test data and use the mean feature vectors for the 5 samples as the prototype for that categpry. The results with different sample selection may vary a bit. To reproduce the results, we provide the features we extracted from our final model. But you can still extract your own features from your trained model.

To extract the features for test data, run

export NGPUS=2
RND_PORT=`shuf -i 4000-7999 -n 1`

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --master_port $RND_PORT --nproc_per_node=$NGPUS \
./tools/train_sem_net.py --config-file "./configs/fsod/e2e_faster_rcnn_R_50_FPN_1x.yaml"  \ 
FEATURE_DIR "features" OUTPUT_DIR "WHERE_YOU_SAVE_YOUR_MODEL" \
FEATURE_SIZE 200 SEM_DIR "visual_sem.txt" GET_FEATURE True \
MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN  2000 \
SOLVER.IMS_PER_BATCH 4 SOLVER.MAX_ITER 80000 \
SOLVER.CHECKPOINT_PERIOD 10000000

To compute the prototype for each class (online morphing), run

cd features

python mean_features.py FEATURE_FILE MEAN_FEATURE_FILE

Then run test,

export NGPUS=2
RND_PORT=`shuf -i 4000-7999 -n 1`

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --master_port $RND_PORT --nproc_per_node=$NGPUS ./tools/test_sem_net.py --config-file "./configs/fsod/e2e_faster_rcnn_R_50_FPN_1x.yaml" SEM_DIR WHERE_YOU_SAVE_THE_PROTOTYPES VISUAL True OUTPUT_DIR WHERE_YOU_SAVE_THE_MODEL MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN 2000 FEATURE_SIZE 200 MODEL.ROI_BOX_HEAD.NUM_CLASSES 201 TEST_SCALE 0.7

Models

Our pre-trained ResNet-50 models can be downloaded as following:

name iterations AP AP^{0.5} model Mean Features
MD 70,000 22.2 37.9 download download
name iterations AP AP^{0.5} Mean Features
MD 1-shot 70,000 19.6 33.3 download
MD 2-shot 70,000 20.9 35.7 download
MD 5-shot 70,000 22.2 37.9 download
Owner
Ph.D. student at EECS department, Northwestern University
《Truly shift-invariant convolutional neural networks》(2021)

Truly shift-invariant convolutional neural networks [Paper] Authors: Anadi Chaman and Ivan Dokmanić Convolutional neural networks were always assumed

Anadi Chaman 46 Dec 19, 2022
Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features

Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features | paper | Official PyTorch implementation for Mul

48 Dec 28, 2022
Flower - A Friendly Federated Learning Framework

Flower - A Friendly Federated Learning Framework Flower (flwr) is a framework for building federated learning systems. The design of Flower is based o

Adap 1.8k Jan 01, 2023
Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021)

T2Net Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021) [Paper][Code] Dependencies numpy==1.18.5 scikit_image==

64 Nov 23, 2022
Running Google MoveNet Multipose Tracking models on OpenVINO.

MoveNet MultiPose Tracking on OpenVINO

60 Nov 17, 2022
Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts

DataSelection-NMT Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts Quick update: The paper got accepted o

Javad Pourmostafa 6 Jan 07, 2023
A tiny, friendly, strong baseline code for Person-reID (based on pytorch).

Pytorch ReID Strong, Small, Friendly A tiny, friendly, strong baseline code for Person-reID (based on pytorch). Strong. It is consistent with the new

Zhedong Zheng 3.5k Jan 08, 2023
Universal Probability Distributions with Optimal Transport and Convex Optimization

Sylvester normalizing flows for variational inference Pytorch implementation of Sylvester normalizing flows, based on our paper: Sylvester normalizing

Rianne van den Berg 172 Dec 13, 2022
🧑‍🔬 verify your TEAL program by experiment and observation

Graviton - Testing TEAL with Dry Runs Tutorial Local Installation The following instructions assume that you have make available in your local environ

Algorand 18 Jan 03, 2023
OpenPCDet Toolbox for LiDAR-based 3D Object Detection.

OpenPCDet OpenPCDet is a clear, simple, self-contained open source project for LiDAR-based 3D object detection. It is also the official code release o

OpenMMLab 3.2k Dec 31, 2022
Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

causal-bald | Abstract | Installation | Example | Citation | Reproducing Results DUE An implementation of the methods presented in Causal-BALD: Deep B

OATML 13 Oct 07, 2022
Detectron2-FC a fast construction platform of neural network algorithm based on detectron2

What is Detectron2-FC Detectron2-FC a fast construction platform of neural network algorithm based on detectron2. We have been working hard in two dir

董晋宗 9 Jun 06, 2022
InferPy: Deep Probabilistic Modeling with Tensorflow Made Easy

InferPy: Deep Probabilistic Modeling Made Easy InferPy is a high-level API for probabilistic modeling written in Python and capable of running on top

PGM-Lab 141 Oct 13, 2022
An implementation of chunked, compressed, N-dimensional arrays for Python.

Zarr Latest Release Package Status License Build Status Coverage Downloads Gitter Citation What is it? Zarr is a Python package providing an implement

Zarr Developers 1.1k Dec 30, 2022
Website which uses Deep Learning to generate horror stories.

Creepypasta - Text Generator Website which uses Deep Learning to generate horror stories. View Demo · View Website Repo · Report Bug · Request Feature

Dhairya Sharma 5 Oct 14, 2022
PyTorch implementations of neural network models for keyword spotting

Honk: CNNs for Keyword Spotting Honk is a PyTorch reimplementation of Google's TensorFlow convolutional neural networks for keyword spotting, which ac

Castorini 475 Dec 15, 2022
🕹️ Official Implementation of Conditional Motion In-betweening (CMIB) 🏃

Conditional Motion In-Betweening (CMIB) Official implementation of paper: Conditional Motion In-betweeening. Paper(arXiv) | Project Page | YouTube in-

Jihoon Kim 81 Dec 22, 2022
SCALoss: Side and Corner Aligned Loss for Bounding Box Regression (AAAI2022).

SCALoss PyTorch implementation of the paper "SCALoss: Side and Corner Aligned Loss for Bounding Box Regression" (AAAI 2022). Introduction IoU-based lo

TuZheng 20 Sep 07, 2022
Implementation of Artificial Neural Network Algorithm

Artificial Neural Network This repository contain implementation of Artificial Neural Network Algorithm in several programming languanges and framewor

Resha Dwika Hefni Al-Fahsi 1 Sep 14, 2022
A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization

MADGRAD Optimization Method A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization pip install madgrad Try it out! A best

Meta Research 774 Dec 31, 2022