Morphable Detector for Object Detection on Demand

Overview

Morphable Detector for Object Detection on Demand

(ICCV 2021) PyTorch implementation of the paper Morphable Detector for Object Detection on Demand.

teaser

If our project is helpful for your research, please consider citing:

@inproceedings{zhaomorph,
  author  = {Xiangyun Zhao, Xu Zou, Ying Wu},
  title   = {Morphable Detector for Object Detection on Demand},
  booktitle = {ICCV},
  Year  = {2021}
}

Install

First, install PyTorch and torchvision. We have tested on version of 1.8.0 with CUDA 11.0, but the other versions should also be working.

Our code is based on maskrcnn-benchmark, so you should install all dependencies.

Data Preparation

Download large scale few detection dataset here and covert the data into COCO dataset format. The file structure should look like:

  $ tree data
  dataset
  ├──fsod
      ├── annototation
      │   
      ├── images

Training (EM-like approach)

We follow FSOD Paper to pretrain the model using COCO dataset for 200,000 iterations. So, you can download the COCO pretrain model here, and use it to initilize the network.

We first initialize the prototypes using semantic vectors, then train the network run:

export NGPUS=2
RND_PORT=`shuf -i 4000-7999 -n 1`

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --master_port $RND_PORT --nproc_per_node=$NGPUS ./tools/train_sem_net.py \
--config-file "./configs/fsod/e2e_faster_rcnn_R_50_FPN_1x.yaml"  OUTPUT_DIR "YOUR_OUTPUT_PATH" \
MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN  2000 SOLVER.IMS_PER_BATCH 4 SOLVER.MAX_ITER 270000 \
SOLVER.STEPS "(50000,70000)" SOLVER.CHECKPOINT_PERIOD 10000 \
SOLVER.BASE_LR 0.002  

Then, to update the prototypes, we first extract the features for the training samples by running:

export NGPUS=2
RND_PORT=`shuf -i 4000-7999 -n 1`

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --master_port $RND_PORT --nproc_per_node=$NGPUS \
./tools/train_sem_net.py --config-file "./configs/fsod/e2e_faster_rcnn_R_50_FPN_1x.yaml"  \ 
FEATURE_DIR "features" OUTPUT_DIR "WHERE_YOU_SAVE_YOUR_MODEL" \
FEATURE_SIZE 200 SEM_DIR "visual_sem.txt" GET_FEATURE True \
MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN  2000 \
SOLVER.IMS_PER_BATCH 4 SOLVER.MAX_ITER 80000 \
SOLVER.CHECKPOINT_PERIOD 10000000

To compute the mean vectors and update the prototypes, run

cd features

python mean_features.py FEATURE_FILE MEAN_FEATURE_FILE
python update_prototype.py MEAN_FEATURE_FILE

To train the network using the updated prototypes, run

export NGPUS=2
RND_PORT=`shuf -i 4000-7999 -n 1`

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --master_port $RND_PORT --nproc_per_node=$NGPUS \
./tools/train_sem_net.py --config-file "./configs/fsod/e2e_faster_rcnn_R_50_FPN_1x.yaml"  \
SEM_DIR "PATH_WHERE_YOU_SAVE_THE_PROTOTYPES" VISUAL True OUTPUT_DIR "WHERE_YOU_SAVE_YOUR_MODEL" \ 
MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN  2000 SOLVER.IMS_PER_BATCH 4 \
SOLVER.MAX_ITER 70000 SOLVER.STEPS "(50000,80000)" \
SOLVER.CHECKPOINT_PERIOD 10000 \
SOLVER.BASE_LR 0.002 

Tests

After the model is trained, we randomly sample 5 samples for each novel category from the test data and use the mean feature vectors for the 5 samples as the prototype for that categpry. The results with different sample selection may vary a bit. To reproduce the results, we provide the features we extracted from our final model. But you can still extract your own features from your trained model.

To extract the features for test data, run

export NGPUS=2
RND_PORT=`shuf -i 4000-7999 -n 1`

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --master_port $RND_PORT --nproc_per_node=$NGPUS \
./tools/train_sem_net.py --config-file "./configs/fsod/e2e_faster_rcnn_R_50_FPN_1x.yaml"  \ 
FEATURE_DIR "features" OUTPUT_DIR "WHERE_YOU_SAVE_YOUR_MODEL" \
FEATURE_SIZE 200 SEM_DIR "visual_sem.txt" GET_FEATURE True \
MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN  2000 \
SOLVER.IMS_PER_BATCH 4 SOLVER.MAX_ITER 80000 \
SOLVER.CHECKPOINT_PERIOD 10000000

To compute the prototype for each class (online morphing), run

cd features

python mean_features.py FEATURE_FILE MEAN_FEATURE_FILE

Then run test,

export NGPUS=2
RND_PORT=`shuf -i 4000-7999 -n 1`

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --master_port $RND_PORT --nproc_per_node=$NGPUS ./tools/test_sem_net.py --config-file "./configs/fsod/e2e_faster_rcnn_R_50_FPN_1x.yaml" SEM_DIR WHERE_YOU_SAVE_THE_PROTOTYPES VISUAL True OUTPUT_DIR WHERE_YOU_SAVE_THE_MODEL MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN 2000 FEATURE_SIZE 200 MODEL.ROI_BOX_HEAD.NUM_CLASSES 201 TEST_SCALE 0.7

Models

Our pre-trained ResNet-50 models can be downloaded as following:

name iterations AP AP^{0.5} model Mean Features
MD 70,000 22.2 37.9 download download
name iterations AP AP^{0.5} Mean Features
MD 1-shot 70,000 19.6 33.3 download
MD 2-shot 70,000 20.9 35.7 download
MD 5-shot 70,000 22.2 37.9 download
Owner
Ph.D. student at EECS department, Northwestern University
Extending JAX with custom C++ and CUDA code

Extending JAX with custom C++ and CUDA code This repository is meant as a tutorial demonstrating the infrastructure required to provide custom ops in

Dan Foreman-Mackey 237 Dec 23, 2022
Code release for SLIP Self-supervision meets Language-Image Pre-training

SLIP: Self-supervision meets Language-Image Pre-training What you can find in this repo: Pre-trained models (with ViT-Small, Base, Large) and code to

Meta Research 621 Dec 31, 2022
Training a deep learning model on the noisy CIFAR dataset

Training-a-deep-learning-model-on-the-noisy-CIFAR-dataset This repository contai

1 Jun 14, 2022
AgeGuesser: deep learning based age estimation system. Powered by EfficientNet and Yolov5

AgeGuesser AgeGuesser is an end-to-end, deep-learning based Age Estimation system, presented at the CAIP 2021 conference. You can find the related pap

5 Nov 10, 2022
Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

Hello from magnus Magnus provides four capabilities for data teams: Compute execution plan: A DAG representation of work that you want to get done. In

12 Feb 08, 2022
Reference implementation for Structured Prediction with Deep Value Networks

Deep Value Network (DVN) This code is a python reference implementation of DVNs introduced in Deep Value Networks Learn to Evaluate and Iteratively Re

Michael Gygli 55 Feb 02, 2022
Inkscape extensions for figure resizing and editing

Academic-Inkscape: Extensions for figure resizing and editing This repository contains several Inkscape extensions designed for editing plots. Scale P

192 Dec 26, 2022
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification

DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification Created by Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, Ch

Yongming Rao 414 Jan 01, 2023
Single object tracking and segmentation.

Single/Multiple Object Tracking and Segmentation Codes and comparison of recent single/multiple object tracking and segmentation. News 💥 AutoMatch is

ZP ZHANG 385 Jan 02, 2023
Official code for the paper "Self-Supervised Prototypical Transfer Learning for Few-Shot Classification"

Self-Supervised Prototypical Transfer Learning for Few-Shot Classification This repository contains the reference source code and pre-trained models (

EPFL INDY 44 Nov 04, 2022
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Dec 31, 2022
K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce (EMNLP Founding 2021)

Introduction K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce. Installation PyTor

Xu Song 21 Nov 16, 2022
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

MI-AOD Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection (The PDF is not available tem

Tianning Yuan 269 Dec 21, 2022
This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Models used for prediction Diabetes and further the basic theory and working of Gold nanoparticles.

GoldNanoparticles This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Mode

1 Jan 30, 2022
Contrastive Fact Verification

VitaminC This repository contains the dataset and models for the NAACL 2021 paper: Get Your Vitamin C! Robust Fact Verification with Contrastive Evide

47 Dec 19, 2022
Implementation of QuickDraw - an online game developed by Google, combined with AirGesture - a simple gesture recognition application

QuickDraw - AirGesture Introduction Here is my python source code for QuickDraw - an online game developed by google, combined with AirGesture - a sim

Viet Nguyen 89 Dec 18, 2022
Some pvbatch (paraview) scripts for postprocessing OpenFOAM data

pvbatchForFoam Some pvbatch (paraview) scripts for postprocessing OpenFOAM data For every script there is a help message available: pvbatch pv_state_s

Morev Ilya 2 Oct 26, 2022
A tool to prepare websites grabbed with wget for local viewing.

makelocal A tool to prepare websites grabbed with wget for local viewing. exapmples After fetching xkcd.com with: wget -r -no-remove-listing -r -N --p

5 Apr 23, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

Libraries, tools and tasks created and used at DeepMind Robotics.

DeepMind 270 Nov 30, 2022
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.

InfoPro-Pytorch The Information Propagation algorithm for training deep networks with local supervision. (ICLR 2021) Revisiting Locally Supervised Lea

78 Dec 27, 2022