Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation

Related tags

Deep Learningsuo_slam
Overview

SUO-SLAM

This repository hosts the code for our CVPR 2022 paper "Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation". ArXiv link.

Citation

If you use any part of this repository in an academic work, please cite our paper as:

@inproceedings{Merrill2022CVPR,
  Title      = {Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation},
  Author     = {Nathaniel Merrill and Yuliang Guo and Xingxing Zuo and Xinyu Huang and Stefan Leutenegger and Xi Peng and Liu Ren and Guoquan Huang},
  Booktitle  = {2022 Conference on Computer Vision and Pattern Recognition (CVPR)},
  Year       = {2022},
  Address    = {New Orleans, USA},
  Month      = jun,
}

Installation

Click for details... This codebase was tested on Ubuntu 18.04. To use the BOP rendering (i.e. for keypoint labeling) install
sudo apt install libfreetype6-dev libglfw3

You will also need a python environment that contains the required packages. To see what packages we used, check out the list of requirements in requirements.txt. They can be installed via pip install -r requirements.txt

Preparing Data

Click for details...

Datasets

To be able to run the training and testing (i.e. single view or with SLAM), first decide on a place to download the data to. The disk will need a few hundred GB of space for all the data (at least 150GB for download and more to extract). All of our code expects the data to be in a local directory ./data, but you can of course symlink this to another location (perhaps with more disk space). So, first of all, in the root of this repo run

$ mkdir data

or to symlink to an external location

$ ln -s /path/to/drive/with/space/ ./data

You can pick and choose what data you want to download (for example just T-LESS or YCBV). Note that all YCBV and TLESS downloads have our keypoint labels packaged along with the data. Download the following google drive links into ./data and extract them.

When all is said and done, the tree should look like this

$ cd ./data && tree --filelimit 3
.
├── bop_datasets
│   ├── tless 
│   └── ycbv 
├── saved_detections
└── VOCdevkit
    └── VOC2012

Pre-trained models

You can download the pretrained models anywhere, but I like to keep them in the results directory that is written to during training.

Training

Click for details...

First set the default arguments in ./lib/args.py for your username if desired, then execute

$ ./train.py

with the appropriate arguments for your filesystem. You can also run

$ ./train.py -h

for a full list of arguments and their meaning. Some important args are batch_size, which is the number of images loaded for each training batch. Note that there may be a variable number of objects in each image, and the objects are all stacked together into one big batch to run the network -- so the actual batch size being run might be multiple times batch_size. In order to keep batch_size reasonably large, we provide another arg called truncate_obj, which, as the help says, truncates the object batches to this number if it exceeds it. We recommend that you start with a large batch size so that you can find out the maximum truncate_obj for you GPUs, then reduce the batch size until there are little to no warnings about too many objects being truncated.

Evaluation

Click for details...

Before you can evaluate in a single-view or SLAM fashion, you will need to build the thirdparty libraries for PnP and graph optimization. First make sure that you have CERES solver installed. The run

$ ./build_thirdparty.sh

Reproducing Results

To reproduce the results of the paper with the pretrained models, check out the scripts under the scripts directory:

eval_all_tless.sh  eval_all_ycbv.sh  make_video.sh

These will reproduce most of the results in the paper as well as any video clips you want. You may have to change the first few lines of each script. Note that these examples can also show you the proper arguments if you want to run from command line alone.

Note that for the T-LESS dataset, we use the thirdparty BOP toolkit to get the VSD error recall, which will show up in the final terminal output as "Mean object recall" among other numbers.

Labeling

Click for details...

Overview

We manually label keypoints on the CAD model to enable some keypoints with semantic meaning. For the full list of keypoint meanings, see the specific README

We provide our landmark labeling tool. Check out the script manual_keypoints.py. This same script can be used to make a visualization of the keypoints as shown below with the --viz option.

The script will show a panel of the same object but oriented slightly differently. The idea is that you pick the same keypoint multiple times to ensure correctness and to get a better label by averaging multiple samples.

The script will also print the following directions to follow in the terminal.

============= Welcome ===============
Select the keypoints with a left click!
Use the "wasd" to turn the objects.
Press "i" to zoom in and "o" to zoom out.
Make sure that the keypoint colors match between all views.
Messed up? Just press 'u' to undo.
Press "Enter" to finish and save the keypoints
Press "Esc" to just quit

Once you have pressed "enter", you will get to an inspection pane.

Where the unscaled mean keypoints are on the left, and the ones scaled by covariance is on the left, where the ellipses are the Gaussian 3-sigma projected onto the image. If the covariance is too large, or the mean is out of place, then you may have messed up. Again, the program will print out these directions to terminal:

Inspect the results!
Use the "wasd" to turn the object.
Press "i" to zoom in and "o" to zoom out.
Press "Esc" to go back, "Enter" to accept (saving keypoints and viewpoint for vizualization).
Please pick a point on the object!

So if you are done, and the result looks good, then press "Enter", if not then "Esc" to go back. Make sure also that when you are done, you rotate and scale the object into the best "view pose" (with the front facing the camera, and top facing up), as this pose is used by both the above vizualization and the actual training code for determining the best symmetry to pick for an initial detection.

Labeling Tips

Even though there are 8 panels, you don't need to fill out all 8. Each keypoint just needs at least 3 samples to sample the covariance.

We recommend that you label the same keypoint (say keypoint i) on all the object renderings first, then go to the inspection panel at the end of this each time so that you can easily undo a mistake for keypoint i with the "u" key and not lose any work. Otherwise, if you label each object rendering completely, then you may have to undo a lot of labelings that were not mistakes.

Also, if there is an object that you want to label a void in the CAD model, like the top center of the bowl, then you can use the multiple samples to your advantage, and choose samples that will average to the desired result, since the labels are required to land on the actual CAD model in the labeling tool.

<\details>

Owner
Robot Perception & Navigation Group (RPNG)
Research on robot sensing, estimation, localization, mapping, perception, and planning
Robot Perception & Navigation Group (RPNG)
Implementation of Kalman Filter in Python

Kalman Filter in Python This is a basic example of how Kalman filter works in Python. I do plan on refactoring and expanding this repo in the future.

Enoch Kan 35 Sep 11, 2022
Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash through feeding it pictures or videos.

Trash-Sorter-Extraordinaire Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash

Rameen Mahmood 1 Nov 07, 2021
An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicity.

Fast Face Classification (F²C) This is the code of our paper An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicit

33 Jun 27, 2021
Barlow Twins and HSIC

Barlow Twins and HSIC Unofficial Pytorch implementation for Barlow Twins and HSIC_SSL on small datasets (CIFAR10, STL10, and Tiny ImageNet). Correspon

Yao-Hung Hubert Tsai 49 Nov 24, 2022
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation Created by Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas from Sta

Charles R. Qi 4k Dec 30, 2022
Pytorch implementation of Deep Recursive Residual Network for Super Resolution (DRRN)

DRRN-pytorch This is an unofficial implementation of "Deep Recursive Residual Network for Super Resolution (DRRN)", CVPR 2017 in Pytorch. [Paper] You

yun_yang 192 Dec 12, 2022
(IEEE TIP 2021) Regularized Densely-connected Pyramid Network for Salient Instance Segmentation

RDPNet IEEE TIP 2021: Regularized Densely-connected Pyramid Network for Salient Instance Segmentation PyTorch training and testing code are available.

Yu-Huan Wu 41 Oct 21, 2022
The official PyTorch implementation of paper BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition

BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition Boyan Zhou, Quan Cui, Xiu-Shen Wei*, Zhao-Min Chen This repo

Megvii-Nanjing 616 Dec 21, 2022
Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

104 Dec 15, 2022
Official Implementation of "Transformers Can Do Bayesian Inference"

Official Code for the Paper "Transformers Can Do Bayesian Inference" We train Transformers to do Bayesian Prediction on novel datasets for a large var

AutoML-Freiburg-Hannover 103 Dec 25, 2022
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
A PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detection.

R-YOLOv4 This is a PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detect

94 Dec 03, 2022
This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

4 Aug 02, 2022
Experiments for Operating Systems Lab (ETCS-352)

Operating Systems Lab (ETCS-352) Experiments for Operating Systems Lab (ETCS-352) performed by me in 2021 at uni. All codes are written by me except t

Deekshant Wadhwa 0 Sep 06, 2022
Source for the paper "Universal Activation Function for machine learning"

Universal Activation Function Tensorflow and Pytorch source code for the paper Yuen, Brosnan, Minh Tu Hoang, Xiaodai Dong, and Tao Lu. "Universal acti

4 Dec 03, 2022
Atif Hassan 103 Dec 14, 2022
PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'

Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning This repository is for EMSRDPN introduced in the foll

7 Feb 10, 2022
本步态识别系统主要基于GaitSet模型进行实现

本步态识别系统主要基于GaitSet模型进行实现。在尝试部署本系统之前,建立理解GaitSet模型的网络结构、训练和推理方法。 系统的实现效果如视频所示: 演示视频 由于模型较大,部分模型文件存储在百度云盘。 链接提取码:33mb 具体部署过程 1.下载代码 2.安装requirements.txt

16 Oct 22, 2022
Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

NeuLab 40 Dec 23, 2022
A pytorch &keras implementation and demo of Fastformer.

Fastformer Notes from the authors Pytorch/Keras implementation of Fastformer. The keras version only includes the core fastformer attention part. The

153 Dec 28, 2022