ICNet and PSPNet-50 in Tensorflow for real-time semantic segmentation

Overview

Real-Time Semantic Segmentation in TensorFlow

Perform pixel-wise semantic segmentation on high-resolution images in real-time with Image Cascade Network (ICNet), the highly optimized version of the state-of-the-art Pyramid Scene Parsing Network (PSPNet). This project implements ICNet and PSPNet50 in Tensorflow with training support for Cityscapes.

Download pre-trained ICNet and PSPNet50 models here

Deploy ICNet and preform inference at over 30fps on NVIDIA Titan Xp.

This implementation is based off of the original ICNet paper proposed by Hengshuang Zhao titled ICNet for Real-Time Semantic Segmentation on High-Resolution Images. Some ideas were also taken from their previous PSPNet paper, Pyramid Scene Parsing Network. The network compression implemented is based on the paper Pruning Filters for Efficient ConvNets.

Release information

October 14, 2018

An ICNet model trained in August, 2018 has been released as a pre-trained model in the Model Zoo. All the models were trained without coarse labels and are evaluated on the validation set.

September 22, 2018

The baseline PSPNet50 pre-trained model files have been released publically in the Model Zoo. The accuracy of the model surpases that referenced in the ICNet paper.

August 12, 2018

Initial release. Project includes scripts for training ICNet, evaluating ICNet and compressing ICNet from ResNet50 weights. Also includes scripts for training PSPNet and evaluating PSPNet as a baseline.

Documentation

Model Depot Inference Tutorials

Overview

ICNet model in Tensorboard.

Training ICNet from Classification Weights

This project has implemented the ICNet training process, allowing you to train your own model directly from ResNet50 weights as is done in the original work. Other available implementations simply convert the Caffe model to Tensorflow, only allowing for fine-tuning from weights trained on Cityscapes.

By training ICNet on weights initialized from ImageNet, you have more flexibility in the transfer learning process. Read more about setting up this process can be found here. For training ICNet, follow the guide here.

ICNet Network Compression

In order to achieve real-time speeds, ICNet uses a form of network compression called filter pruning. This drastically reduces the complexity of the model by removing filters from convolutional layers in the network. This project has also implemented this ICNet compression process directly in Tensorflow.

The compression is working, however which "compression scheme" to use is still somewhat ambiguous when reading the original ICNet paper. This is still a work in progress.

PSPNet Baseline Implementation

In order to also reproduce the baselines used in the original ICNet paper, you will also find implementations and pre-trained models for PSPNet50. Since ICNet can be thought of as a modified PSPNet, it can be useful for comparison purposes.

Informtion on training or using the baseline PSPNet50 model can be found here.

Maintainers

If you found the project, documentation and the provided pretrained models useful in your work, consider citing it with

@misc{fastsemseg2018,
  author={Andrienko, Oles},
  title={Fast Semantic Segmentation},
  howpublished={\url{https://github.com/oandrienko/fast-semantic-segmentation}},
  year={2018}
}

Related Work

This project and some of the documentation was based on the Tensorflow Object Detection API. It was the initial inspiration for this project. The third_party directory of this project contains files from OpenAI's Gradient Checkpointing project by Tim Salimans and Yaroslav Bulatov. The helper modules found in third_party/model_deploy.py are from the Tensorflow Slim project. Finally, another open source ICNet implementation which converts the original Caffe network weights to Tensorflow was used as a reference. Find all these projects below:

Thanks

  • This project could not have happened without the advice (and GPU access) given by Professor Steven Waslander and Ali Harakeh from the Waterloo Autonomous Vehicles Lab (now the Toronto Robotics and Artificial Intelligence Lab).
Owner
Oles Andrienko
Oles Andrienko
Reverse engineer your pytorch vision models, in style

🔍 Rover Reverse engineer your CNNs, in style Rover will help you break down your CNN and visualize the features from within the model. No need to wri

Mayukh Deb 32 Sep 24, 2022
Dataset para entrenamiento de yoloV3 para 4 clases

Deteccion de objetos en video Este repo basado en el proyecto PyTorch YOLOv3 para correr detección de objetos sobre video. Construí sobre este proyect

1 Nov 01, 2021
Distributed Asynchronous Hyperparameter Optimization better than HyperOpt.

UltraOpt : Distributed Asynchronous Hyperparameter Optimization better than HyperOpt. UltraOpt is a simple and efficient library to minimize expensive

98 Aug 16, 2022
FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

HKBU High Performance Machine Learning Lab 6 Nov 18, 2022
MarcoPolo is a clustering-free approach to the exploration of bimodally expressed genes along with group information in single-cell RNA-seq data

MarcoPolo is a method to discover differentially expressed genes in single-cell RNA-seq data without depending on prior clustering Overview MarcoPolo

Chanwoo Kim 13 Dec 18, 2022
Metrics to evaluate quality and efficacy of synthetic datasets.

An Open Source Project from the Data to AI Lab, at MIT Metrics for Synthetic Data Generation Projects Website: https://sdv.dev Documentation: https://

The Synthetic Data Vault Project 129 Jan 03, 2023
improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea

310 Dec 28, 2022
A python library to artfully visualize Factorio Blueprints and an interactive web demo for using it.

Factorio Blueprint Visualizer I love the game Factorio and I really like the look of factories after growing for many hours or blueprints after tweaki

Piet Brömmel 124 Jan 07, 2023
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

The source code is temporariy removed, as we are solving potential copyright and license issues with GRANSO (http://www.timmitchell.com/software/GRANS

SUN Group @ UMN 28 Aug 03, 2022
RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting

RATCHET: RAdiological Text Captioning for Human Examined Thoraxes RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting. Based on t

26 Nov 14, 2022
Weakly Supervised Scene Text Detection using Deep Reinforcement Learning

Weakly Supervised Scene Text Detection using Deep Reinforcement Learning This repository contains the setup for all experiments performed in our Paper

Emanuel Metzenthin 3 Dec 16, 2022
Safe Local Motion Planning with Self-Supervised Freespace Forecasting, CVPR 2021

Safe Local Motion Planning with Self-Supervised Freespace Forecasting By Peiyun Hu, Aaron Huang, John Dolan, David Held, and Deva Ramanan Citing us Yo

Peiyun Hu 90 Dec 01, 2022
Code for NeurIPS 2020 article "Contrastive learning of global and local features for medical image segmentation with limited annotations"

Contrastive learning of global and local features for medical image segmentation with limited annotations The code is for the article "Contrastive lea

Krishna Chaitanya 152 Dec 22, 2022
Implement of "Training deep neural networks via direct loss minimization" in PyTorch for 0-1 loss

This is the implementation of "Training deep neural networks via direct loss minimization" published at ICML 2016 in PyTorch. The implementation targe

Cuong Nguyen 1 Jan 18, 2022
Reinforcement learning algorithms in RLlib

raylab Reinforcement learning algorithms in RLlib and PyTorch. Installation pip install raylab Quickstart Raylab provides agents and environments to b

Ângelo 50 Sep 08, 2022
FlingBot: The Unreasonable Effectiveness of Dynamic Manipulations for Cloth Unfolding

This repository contains code for training and evaluating FlingBot in both simulation and real-world settings on a dual-UR5 robot arm setup for Ubuntu 18.04

Columbia Artificial Intelligence and Robotics Lab 70 Dec 06, 2022
Code for ICCV2021 paper PARE: Part Attention Regressor for 3D Human Body Estimation

PARE: Part Attention Regressor for 3D Human Body Estimation [ICCV 2021] PARE: Part Attention Regressor for 3D Human Body Estimation, Muhammed Kocabas,

Muhammed Kocabas 277 Jan 03, 2023
exponential adaptive pooling for PyTorch

AdaPool: Exponential Adaptive Pooling for Information-Retaining Downsampling Abstract Pooling layers are essential building blocks of Convolutional Ne

Alexandros Stergiou 55 Jan 04, 2023
Let's Git - Versionsverwaltung & Open Source Hausaufgabe

Let's Git - Versionsverwaltung & Open Source Hausaufgabe Herzlich Willkommen zu dieser Hausaufgabe für unseren MOOC: Let's Git! Wir hoffen, dass Du vi

1 Dec 13, 2021
Network Compression via Central Filter

Network Compression via Central Filter Environments The code has been tested in the following environments: Python 3.8 PyTorch 1.8.1 cuda 10.2 torchsu

2 May 12, 2022