ICNet and PSPNet-50 in Tensorflow for real-time semantic segmentation

Overview

Real-Time Semantic Segmentation in TensorFlow

Perform pixel-wise semantic segmentation on high-resolution images in real-time with Image Cascade Network (ICNet), the highly optimized version of the state-of-the-art Pyramid Scene Parsing Network (PSPNet). This project implements ICNet and PSPNet50 in Tensorflow with training support for Cityscapes.

Download pre-trained ICNet and PSPNet50 models here

Deploy ICNet and preform inference at over 30fps on NVIDIA Titan Xp.

This implementation is based off of the original ICNet paper proposed by Hengshuang Zhao titled ICNet for Real-Time Semantic Segmentation on High-Resolution Images. Some ideas were also taken from their previous PSPNet paper, Pyramid Scene Parsing Network. The network compression implemented is based on the paper Pruning Filters for Efficient ConvNets.

Release information

October 14, 2018

An ICNet model trained in August, 2018 has been released as a pre-trained model in the Model Zoo. All the models were trained without coarse labels and are evaluated on the validation set.

September 22, 2018

The baseline PSPNet50 pre-trained model files have been released publically in the Model Zoo. The accuracy of the model surpases that referenced in the ICNet paper.

August 12, 2018

Initial release. Project includes scripts for training ICNet, evaluating ICNet and compressing ICNet from ResNet50 weights. Also includes scripts for training PSPNet and evaluating PSPNet as a baseline.

Documentation

Model Depot Inference Tutorials

Overview

ICNet model in Tensorboard.

Training ICNet from Classification Weights

This project has implemented the ICNet training process, allowing you to train your own model directly from ResNet50 weights as is done in the original work. Other available implementations simply convert the Caffe model to Tensorflow, only allowing for fine-tuning from weights trained on Cityscapes.

By training ICNet on weights initialized from ImageNet, you have more flexibility in the transfer learning process. Read more about setting up this process can be found here. For training ICNet, follow the guide here.

ICNet Network Compression

In order to achieve real-time speeds, ICNet uses a form of network compression called filter pruning. This drastically reduces the complexity of the model by removing filters from convolutional layers in the network. This project has also implemented this ICNet compression process directly in Tensorflow.

The compression is working, however which "compression scheme" to use is still somewhat ambiguous when reading the original ICNet paper. This is still a work in progress.

PSPNet Baseline Implementation

In order to also reproduce the baselines used in the original ICNet paper, you will also find implementations and pre-trained models for PSPNet50. Since ICNet can be thought of as a modified PSPNet, it can be useful for comparison purposes.

Informtion on training or using the baseline PSPNet50 model can be found here.

Maintainers

If you found the project, documentation and the provided pretrained models useful in your work, consider citing it with

@misc{fastsemseg2018,
  author={Andrienko, Oles},
  title={Fast Semantic Segmentation},
  howpublished={\url{https://github.com/oandrienko/fast-semantic-segmentation}},
  year={2018}
}

Related Work

This project and some of the documentation was based on the Tensorflow Object Detection API. It was the initial inspiration for this project. The third_party directory of this project contains files from OpenAI's Gradient Checkpointing project by Tim Salimans and Yaroslav Bulatov. The helper modules found in third_party/model_deploy.py are from the Tensorflow Slim project. Finally, another open source ICNet implementation which converts the original Caffe network weights to Tensorflow was used as a reference. Find all these projects below:

Thanks

  • This project could not have happened without the advice (and GPU access) given by Professor Steven Waslander and Ali Harakeh from the Waterloo Autonomous Vehicles Lab (now the Toronto Robotics and Artificial Intelligence Lab).
Owner
Oles Andrienko
Oles Andrienko
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution This is the official implementation code of the paper "CondLaneNe

Alibaba Cloud 311 Dec 30, 2022
RP-GAN: Stable GAN Training with Random Projections

RP-GAN: Stable GAN Training with Random Projections This repository contains a reference implementation of the algorithm described in the paper: Behna

Ayan Chakrabarti 20 Sep 18, 2021
Find the Heart simple Python Game

This is a simple Python game for finding a heart emoji. There is a 3 x 3 matrix in which a heart emoji resides. The location of the heart is randomized and is not revealed. The player must guess the

p.katekomol 1 Jan 24, 2022
Weakly Supervised Scene Text Detection using Deep Reinforcement Learning

Weakly Supervised Scene Text Detection using Deep Reinforcement Learning This repository contains the setup for all experiments performed in our Paper

Emanuel Metzenthin 3 Dec 16, 2022
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Dec 30, 2022
Chatbot in 200 lines of code using TensorLayer

Seq2Seq Chatbot This is a 200 lines implementation of Twitter/Cornell-Movie Chatbot, please read the following references before you read the code: Pr

TensorLayer Community 820 Dec 17, 2022
[Preprint] "Chasing Sparsity in Vision Transformers: An End-to-End Exploration" by Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang

Chasing Sparsity in Vision Transformers: An End-to-End Exploration Codes for [Preprint] Chasing Sparsity in Vision Transformers: An End-to-End Explora

VITA 64 Dec 08, 2022
NovelD: A Simple yet Effective Exploration Criterion

NovelD: A Simple yet Effective Exploration Criterion Intro This is an implementation of the method proposed in NovelD: A Simple yet Effective Explorat

29 Dec 05, 2022
Probabilistic Cross-Modal Embedding (PCME) CVPR 2021

Probabilistic Cross-Modal Embedding (PCME) CVPR 2021 Official Pytorch implementation of PCME | Paper Sanghyuk Chun1 Seong Joon Oh1 Rafael Sampaio de R

NAVER AI 87 Dec 21, 2022
Implementation of "Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis"

Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis Abstract: This work targets at using a general deep lea

163 Dec 14, 2022
DGN pymarl - Implementation of DGN on Pymarl, which could be trained by VDN or QMIX

This is the implementation of DGN on Pymarl, which could be trained by VDN or QM

4 Nov 23, 2022
[AAAI 2022] Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation with Limited Annotation

A paper Introduction This is an official release of the paper Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation wit

Jiacheng Wang 14 Dec 08, 2022
MLP-Like Vision Permutator for Visual Recognition (PyTorch)

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (arxiv) This is a Pytorch implementation of our paper. We present Vision

Qibin (Andrew) Hou 162 Nov 28, 2022
Attendance Monitoring with Face Recognition using Python

Attendance Monitoring with Face Recognition using Python A python GUI integrated attendance system using face recognition to take attendance. In this

Vaibhav Rajput 2 Jun 21, 2022
Source code for Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning

Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning Official implementation of ACC, described in the paper "Adaptively Calibrated C

3 Sep 16, 2022
Public repository containing materials used for Feed Forward (FF) Neural Networks article.

Art041_NN_Feed_Forward Public repository containing materials used for Feed Forward (FF) Neural Networks article. -- Illustration of a very simple Fee

SolClover 2 Dec 29, 2021
Papers about explainability of GNNs

Papers about explainability of GNNs

Dongsheng Luo 236 Jan 04, 2023
Music Generation using Neural Networks Streamlit App

Music_Gen_Streamlit "Music Generation using Neural Networks" Streamlit App TO DO: Make a run_app.sh Introduction [~5 min] (Sohaib) Team Member names/i

Muhammad Sohaib Arshid 6 Aug 09, 2022
Code for our ALiBi method for transformer language models.

Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation This repository contains the code and models for our paper Tra

Ofir Press 211 Dec 31, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023