통일된 DataScience 폴더 구조 제공 및 가상환경 작업의 부담감 해소

Related tags

Deep LearningLucas
Overview


Lucas

Hits


coded by linux shell

목차


Patch Note 📜


Team member

Contributors/People

ympark gbhwang cbchun
https://github.com/pym7857 https://github.com/gbhwang https://github.com/bermmie1000
  • You can see team member and github profile
  • You should probably find team member's lastest project



Requirements

  • python 3.xx



Mac버전 CookieCutter (autoenv)

🚫 주의
$> brew install autoenv 로 다운로드 받아서 실행시키면 터미널 고장납니다.
반드시 autoenv Github 에서 git clone 으로 다운받아 주세요. (현재 시점 21.3.24)

⚠️ mac버전만 소개합니다.

1. How to Install autoenv

$ git clone git://github.com/inishchith/autoenv.git ~/.autoenv

2.폴더 진입 시, activate 구현하기

$ echo 'source ~/.autoenv/activate.sh' >> ~/.zshrc
$ source ~/.zshrc

🔔 하단의.env파일은 현재 repo의 cookiecutter에서 자동으로 생성해줍니다. (스킵)

# .env 파일
echo "HELLO autoenv"
{
    source .dev-venv/bin/activate
    echo "virtual env is successfully activated!"
} ||
{
    echo "[virtual env start] is failed!"
}

.env파일 설정 후 첫 폴더 진입시 .env파일을 신뢰하고 실행할지 않을 지에 대한 동의가 나타납니다. autoenv 이 부분은 .env파일이 악의적으로 변경되었을때 사용자에게 알리기 위해서 있기 때문에 즐거운 마음으로 Y를 눌러줍시다.
이제 정상적으로 가상환경이 activate된 것을 확인할 수 있습니다.

3.폴더 탈출 시, deactivate 구현하기

$> vi ~/.zshrc

마지막줄에 다음의 명령어를 추가해줍니다.

export AUTOENV_ENABLE_LEAVE='"enabled"' 

🔔 하단의.env.leave파일은 현재 repo의 cookiecutter에서 자동으로 생성해줍니다. (스킵)

# .env.leave 파일
echo "BYEBYE"
{
    deactivate
    echo "virtual env is successfully deactivated!"
} ||
{
    echo "[virtual env quit] is failed!"
}

.env.leave파일 설정 후 해당 폴더에서 나가면
정상적으로 가상환경이 deactivate 되는 것을 확인할 수 있습니다.

4.Alias 설정하기

echo 'alias cookie="bash [각자 컴퓨터의 상대경로/cookie_cutter_project_dir.sh]"' >> ~/.zshrc
ex) echo 'alias cookie="bash /Users/gbhwang/Desktop/Project/Test/Lucas/mac/cookie_cutter_project_dir.sh"' >> ~/.zshrc

맥 파일경로 확인법을 참고하여
각자 mac폴더안의 cookie_cutter_project_dir.sh 파일의 경로를 확인하여 zshrc에 넣어주시면 됩니다.

이렇게 하면 cookie 명령어 만으로 간단하게 스크립트를 실행시킬 수 있게 됩니다.
위와 같이 설정하면 cookie [프로젝트 생성할 경로] [프로젝트 이름] 명령어로 프로젝트를 생성할 수 있게 됩니다.

5.How to Use

$> cd "where-you-want"
$> git clone https://github.com/LS-ELLO/Lucas.git
$> cd Lucas
$> cd mac

$> cookie [where-you-want] [your-project-name]
ex) $> cookie . test111



Windows버전 CookieCutter (ps-autoenv)

도움 주신 규본님 감사합니다.
ps-autoenv를 사용합니다.

1.How to install ps-autoenv

Powershell 실행 (관리자 권한 실행)

PS> Install-Module ps-autoenv
PS> Add-Content $PROFILE @("`n", "import-module ps-autoenv")

2.Alias 설정하기 (git-bash)

참조

  1. C:/Program Files/Git/etc/profile.d/aliases.sh 파일을 관리자 권한으로 Text Editor에 실행시킵니다.

  2. 다음의 명령어를 추가합니다.
    alias cookie='bash cookie_cutter_project_dir.sh의 상대경로'
    ex) alias cookie='bash D:/Lucas/windows/cookie_cutter_project_dir.sh'

    (aliases.sh)

    # Some good standards, which are not used if the user
    # creates his/her own .bashrc/.bash_profile
    
    # --show-control-chars: help showing Korean or accented characters
    alias ls='ls -F --color=auto --show-control-chars'
    alias ll='ls -l'
    alias cookie='bash [where-your-cookie_cutter_project_dir.sh]'
    
    case "$TERM" in
    ...

3.How to Use

Git Bash 실행

bash> cd "where-this-repo-downloaded"
bash> cd windows
bash> cookie [where-you-want] [your-project-name]
ex) cookie . 1bot

Powershell 실행

PS> Import-Module ps-autoenv
PS> cd "where-your-cookiecutter-project"
ex. PS> cd "C:\Users\ympark4\Documents\1bot"
PS> press 'Y'
🚫 PSSecurityException 오류 발생할때

https://extbrain.tistory.com/118 를 참조해서 해결주세요.



The resulting directory structure

The directory structure of your new project looks like this:

├── LICENSE
├── Makefile
├── README.md          ← The top-level README for developers using this project.
├── data
│   ├── external       ← Data from third party sources.
│   ├── interim        ← Intermediate data that has been transformed.
│   ├── processed      ← The final, canonical data sets for modeling.
│   └── raw            ← The original, immutable data dump.
├── docs               ← A default Sphinx project; see sphinx-doc.org for details
├── models             ← Trained and serialized models, model predictions, or model summaries
├── notebooks          ← Jupyter notebooks. Naming convention is a number (for ordering), the creator's initials, and a short `-` delimited description, e.g. `1.0-jqp-initial-data-exploration`.
├── references         ← Data dictionaries, manuals, and all other explanatory materials.
├── reports            ← Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures        ← Generated graphics and figures to be used in reporting
├── requirements.txt   ← The requirements file for reproducing the analysis environment, e.g. generated with `pip freeze > requirements.txt`
├── setup.py           ← makes project pip installable (pip install -e .) so src can be imported
├── src                ← Source code for use in this project.
│   ├── __init__.py  
│   ├── dataread      
│   │   └── __init__.py
│   │   └── example.py
│   │
│   ├── features       
│   │   └── __init__.py
│   │   └── example.py
│   │
│   ├── models     
│   │   └── __init__.py
│   │   └── example.py
│   │
│   ├── visualization    
│   │   └── __init__.py
│   │   └── example.py
├── App               
│   ├── android       
│   ├── ios           
│   ├── lib            
│   │   └── models
│   │   └── main.dart
│
└── .gitignore        



Owner
ello
ello
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.

Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N

HUAWEI Noah's Ark Lab 2.6k Jan 01, 2023
All-in-one Docker container that allows a user to explore Nautobot in a lab environment.

Nautobot Lab This container is not for production use! Nautobot Lab is an all-in-one Docker container that allows a user to quickly get an instance of

Nautobot 29 Sep 16, 2022
This repository contains the files for running the Patchify GUI.

Repository Name Train-Test-Validation-Dataset-Generation App Name Patchify Description This app is designed for crop images and creating smal

Salar Ghaffarian 9 Feb 15, 2022
Code for "Retrieving Black-box Optimal Images from External Databases" (WSDM 2022)

Retrieving Black-box Optimal Images from External Databases (WSDM 2022) We propose how a user retreives an optimal image from external databases of we

joisino 5 Apr 13, 2022
TensorFlow CNN for fast style transfer

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! It takes 100ms on a 2015 Titan X to style t

1 Dec 14, 2021
ISBI 2022: Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image.

Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image Introduction This repository contains the PyTorch implem

25 Nov 09, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

selfcontact This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] It includes the main function

Lea Müller 68 Dec 06, 2022
Learning Tracking Representations via Dual-Branch Fully Transformer Networks

Learning Tracking Representations via Dual-Branch Fully Transformer Networks DualTFR ⭐ We achieves the runner-ups for both VOT2021ST (short-term) and

phiphi 19 May 04, 2022
KoCLIP: Korean port of OpenAI CLIP, in Flax

KoCLIP This repository contains code for KoCLIP, a Korean port of OpenAI's CLIP. This project was conducted as part of Hugging Face's Flax/JAX communi

Jake Tae 100 Jan 02, 2023
UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning

UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning This is the official PyTorch implementation for UniMoCo pape

dddzg 49 Jan 02, 2023
A collection of loss functions for medical image segmentation

A collection of loss functions for medical image segmentation

Jun 3.1k Jan 03, 2023
Language-Driven Semantic Segmentation

Language-driven Semantic Segmentation (LSeg) The repo contains official PyTorch Implementation of paper Language-driven Semantic Segmentation. Authors

Intelligent Systems Lab Org 416 Jan 03, 2023
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 123 Dec 23, 2022
A two-stage U-Net for high-fidelity denoising of historical recordings

A two-stage U-Net for high-fidelity denoising of historical recordings Official repository of the paper (not submitted yet): E. Moliner and V. Välimäk

Eloi Moliner Juanpere 57 Jan 05, 2023
Ontologysim: a Owlready2 library for applied production simulation

Ontologysim: a Owlready2 library for applied production simulation Ontologysim is an open-source deep production simulation framework, with an emphasi

10 Nov 30, 2022
A Distributional Approach To Controlled Text Generation

A Distributional Approach To Controlled Text Generation This is the repository code for the ICLR 2021 paper "A Distributional Approach to Controlled T

NAVER 102 Jan 07, 2023
Pytorch implementation of our method for regularizing nerual radiance fields for few-shot neural volume rendering.

InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering Pytorch implementation of our method for regularizing nerual radiance fields f

106 Jan 06, 2023
Unified learning approach for egocentric hand gesture recognition and fingertip detection

Unified Gesture Recognition and Fingertip Detection A unified convolutional neural network (CNN) algorithm for both hand gesture recognition and finge

Mohammad 227 Dec 25, 2022
This is official implementaion of paper "Token Shift Transformer for Video Classification".

This is official implementaion of paper "Token Shift Transformer for Video Classification". We achieve SOTA performance 80.40% on Kinetics-400 val. Paper link

VideoNet 60 Dec 30, 2022
Codes for "Template-free Prompt Tuning for Few-shot NER".

EntLM The source codes for EntLM. Dependencies: Cuda 10.1, python 3.6.5 To install the required packages by following commands: $ pip3 install -r requ

77 Dec 27, 2022