General Vision Benchmark, a project from OpenGVLab

Overview

Introduction

  • We build GV-B(General Vision Benchmark) on Classification, Detection, Segmentation and Depth Estimation including 26 datasets for model evaluation.
  • It is recommended to evaluate with low-data regime, using only 10% training data.
  • The parameters of model backbone will be frozen during training, as known as 'linear probe'.
  • Face Detection and Depth Estimation is not provided for now, you may evaluate via official repo if needed.
  • Specifically, we use central_model.py in our repo to represent the implementation of Up-G models.

Task Supported

  • Object Classification
  • Object Detection (VOC Detection)
  • Pedestrian Detection (CityPersons Detection)
  • Semantic Segmentation (VOC Segmentation)
  • Face Detection (WiderFace Detection)
  • Depth Estimation (Kitti/NYU-v2 Depth Estimation)

Installation

Requirements

Install Dependencies

a. Create a conda virtual environment and activate it.

conda create -n open-mmlab python=3.8 -y
conda activate open-mmlab

b. Install PyTorch and torchvision following the official instructions, e.g.:

conda install pytorch torchvision -c pytorch
Make sure that your compilation CUDA version and runtime CUDA version match.
You can check the supported CUDA version for precompiled packages on the
[PyTorch website](https://pytorch.org/).

c. Install openmm package via pip (mmcls, mmdet, mmseg):

pip install mmcls
pip install mmdet
pip install mmsegmetation

Usage

This section provide basic tutorials about the usage of GV-B.

Prepare datasets

For each evaluation task, you can follow the official repo tutorial for data preparation.

mmclassification

mmdetection

mmsegmentation

Model evaluation

We use MIM to submit evaluation in GV-B.

a.If you run MMClassification on a cluster managed with slurm, you can use the script mim_slurm_train.sh. (This script also supports single machine training.)

sh tools/mim_slurm_train.sh $PARTITION $TASK $CONFIG $WORK_DIR

b.If you run on w/o slurm. (More details can be found in docs of openmim)

PYTHONPATH='.':$PYTHONPATH mim train $TASK $CONFIG $WORK_DIR
  • PARTITION: The partition you are using
  • WORK_DIR: The directory to save logs and checkpoints
  • CONFIG: Config files corresponding to tasks.

Detailed Tutorials

Currently, we provide tutorials for users.

Benchmark(with Hyperparameter searching)

CLS DET SEG DEP
10% data Cifar10 Cifar100 Food Pets Flowers Sun Cars Dtd Caltech Aircraft Svhn Eurosat Resisc45 Retinopathy Fer2013 Ucf101 Gtsrb Pcam Imagenet Kinetics700 VOC07+12 WIDER FACE CityPersons VOC2012 KITTI NYUv2
Up-A R50 92.4 73.5 75.8 85.7 94.6 57.9 52.7 65.0 88.5 28.7 61.4 93.8 82.9 73.8 55.0 71.1 75.1 82.9 71.9 35.2 76.3 90.3/88.3/70.7 24.6/59.0 62.54 3.181 0.456
MN-B4 96.1 82.9 84.3 89.8 98.3 66.0 61.4 66.8 92.8 32.5 60.4 92.7 85.8 75.6 56.5 76.9 74.4 84.3 77.2 39.4 74.9 89.3/87.6/71.4 26.5/61.8 65.71 3.565 0.482
MN-B15 98.2 87.8 93.9 92.8 99.6 72.3 59.4 70.0 93.8 64.8 58.6 95.3 91.9 77.9 62.8 85.4 76.2 87.8 86.0 52.9 78.4 93.6/91.8/77.2 17.7/49.5 60.68 2.423 0.383
Up-E C-R50 91.9 71.2 80.7 88.8 94.0 57.4 67.9 62.7 85.5 73.9 57.6 93.7 83.6 75.4 54.1 69.6 73.9 85.7 72.5 34.6 72.2 89.7/87.6/68.1 22.4/58.3 57.66 3.214 0.501
D-R50 86.4 57.3 53.9 31.4 44.0 39.8 8.6 44.6 72.5 15.8 64.2 89.1 72.8 73.6 46.6 57.4 67.5 81.7 45.0 25.2 87.7 93.8/92.0/75.5 15.8/41.5 62.3 3.09 0.45
S-R50 78.3 46.6 45.1 24.2 33.9 38.0 5.0 41.4 50.2 8.5 51.5 89.9 76.4 74.0 44.8 42.0 64.0 80.8 34.9 19.7 75.0 87.4/85.7/66.4 19.6/53.3 71.9 3.12 0.45
C-MN-B4 96.7 83.2 89.2 91.9 98.2 66.7 67.7 66.3 91.9 77.2 57.8 94.4 88.0 77.0 56.6 78.5 77.3 85.6 80.5 44.2 73.7 89.6/88.0/71.1 30.3/65.0 65.8 3.54 0.46
D-MN-B4 91.5 67.0 61.4 44.4 57.2 41.8 12.1 41.2 80.6 25.1 68.0 90.7 74.6 74.3 50.3 61.7 74.2 81.9 57.0 29.3 89.3 94.6/92.6/76.5 14.0/43.8 73.1 3.05 0.40
S-MN-B4 83.5 57.2 68.3 70.8 85.8 52.9 25.9 52.8 81.6 17.7 56.1 91.3 83.6 74.5 49.0 55.2 68.0 84.3 61.0 27.4 78.7 89.5/87.9/71.4 19.4/53.0 79.6 3.06 0.41
C-MN-B-15 98.7 90.1 94.7 95.1 99.7 75.7 74.9 73.6 94.4 91.8 66.7 96.2 92.8 77.6 62.3 87.7 83.3 87.5 87.2 54.7 80.4 93.2/91.4/75.7 29.5/59.9 70.6 2.63 0.37
D-MN-B-15 92.2 67.9 69.0 33.9 59.5 45.4 13.8 46.3 82.0 26.6 65.4 90.1 79.1 76.0 53.2 63.7 74.4 83.3 62.2 33.7 89.4 95.8/94.4/80.1 10.5/42.4 77.2 2.72 0.37
Up-G R50 92.9 73.7 81.1 88.9 94.0 58.6 68.6 63.0 86.1 74.0 57.9 94.4 84.0 75.7 54.3 70.8 74.3 85.9 72.6 34.8 87.7 93.9/92.2/77.0 14.7/46.0 66.19 2.835 0.39
MN-B4 96.7 83.9 89.2 92.1 98.2 66.7 67.7 66.5 91.9 77.2 57.8 94.4 88.0 77.0 57.1 79 77.7 86 80.5 44.2 89.1 94.9/92.8/76.5 12.0/50.5 71.4 2.94 0.40
MN-B15 98.7 90.4 94.5 95.4 99.7 74.4 75.4 74.2 94.5 91.8 66.7 96.3 92.7 77.9 63.1 88 83.6 88 87.1 54.7 89.8 95.9/94.2/79.6 10.5/41.3 77.3 2.71 0.37
Pytorch implementation of the paper SPICE: Semantic Pseudo-labeling for Image Clustering

SPICE: Semantic Pseudo-labeling for Image Clustering By Chuang Niu and Ge Wang This is a Pytorch implementation of the paper. (In updating) SOTA on 5

Chuang Niu 154 Dec 15, 2022
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

250 Jan 08, 2023
POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propagation including diffraction

POPPY: Physical Optics Propagation in Python POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propaga

Space Telescope Science Institute 132 Dec 15, 2022
High-performance moving least squares material point method (MLS-MPM) solver.

High-Performance MLS-MPM Solver with Cutting and Coupling (CPIC) (MIT License) A Moving Least Squares Material Point Method with Displacement Disconti

Yuanming Hu 2.2k Dec 31, 2022
Orchestrating Distributed Materials Acceleration Platform Tutorial

Orchestrating Distributed Materials Acceleration Platform Tutorial This tutorial for orchestrating distributed materials acceleration platform was pre

BIG-MAP 1 Jan 25, 2022
existing and custom freqtrade strategies supporting the new hyperstrategy format.

freqtrade-strategies Description Existing and self-developed strategies, rewritten to support the new HyperStrategy format from the freqtrade-develop

39 Aug 20, 2021
In this project I played with mlflow, streamlit and fastapi to create a training and prediction app on digits

Fastapi + MLflow + streamlit Setup env. I hope I covered all. pip install -r requirements.txt Start app Go in the root dir and run these Streamlit str

76 Nov 23, 2022
YOLOX-Paddle - A reproduction of YOLOX by PaddlePaddle

YOLOX-Paddle A reproduction of YOLOX by PaddlePaddle 数据集准备 下载COCO数据集,准备为如下路径 /ho

QuanHao Guo 6 Dec 18, 2022
PAWS 🐾 Predicting View-Assignments with Support Samples

This repo provides a PyTorch implementation of PAWS (predicting view assignments with support samples), as described in the paper Semi-Supervised Learning of Visual Features by Non-Parametrically Pre

Facebook Research 437 Dec 23, 2022
Demonstrational Session git repo for H SAF User Workshop (28/1)

5th H SAF User Workshop The 5th H SAF User Workshop supported by EUMeTrain will be held in online in January 24-28 2022. This repository contains inst

H SAF 4 Aug 04, 2022
Autolfads-tf2 - A TensorFlow 2.0 implementation of Latent Factor Analysis via Dynamical Systems (LFADS) and AutoLFADS

autolfads-tf2 A TensorFlow 2.0 implementation of LFADS and AutoLFADS. Installati

Systems Neural Engineering Lab 11 Oct 29, 2022
(JMLR' 19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats & License PyOD is a comprehensive and scalable Python toolkit for detecting outlyin

Yue Zhao 6.6k Jan 05, 2023
Annotated notes and summaries of the TensorFlow white paper, along with SVG figures and links to documentation

TensorFlow White Paper Notes Features Notes broken down section by section, as well as subsection by subsection Relevant links to documentation, resou

Sam Abrahams 437 Oct 09, 2022
🗺 General purpose U-Network implemented in Keras for image segmentation

TF-Unet General purpose U-Network implemented in Keras for image segmentation Getting started • Training • Evaluation Getting started Looking for Jupy

Or Fleisher 2 Aug 31, 2022
[CVPR 2022] "The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy" by Tianlong Chen, Zhenyu Zhang, Yu Cheng, Ahmed Awadallah, Zhangyang Wang

The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy Codes for this paper: [CVPR 2022] The Pr

VITA 16 Nov 26, 2022
Prml - Repository of notes, code and notebooks in Python for the book Pattern Recognition and Machine Learning by Christopher Bishop

Pattern Recognition and Machine Learning (PRML) This project contains Jupyter notebooks of many the algorithms presented in Christopher Bishop's Patte

Gerardo Durán-Martín 1k Jan 07, 2023
Molecular AutoEncoder in PyTorch

MolEncoder Molecular AutoEncoder in PyTorch Install $ git clone https://github.com/cxhernandez/molencoder.git && cd molencoder $ python setup.py insta

Carlos Hernández 80 Dec 05, 2022
Face-Recognition-Attendence-System - This face recognition Attendence system using Python

Face-Recognition-Attendence-System I have developed this face recognition Attend

Riya Gupta 4 May 10, 2022
LBBA-boosted WSOD

LBBA-boosted WSOD Summary Our code is based on ruotianluo/pytorch-faster-rcnn and WSCDN Sincerely thanks for your resources. Newer version of our code

Martin Dong 20 Sep 19, 2022
Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"

Code for paper "Context-self contrastive pretraining for crop type semantic segmentation" Setting up a python environment Follow the instruction in ht

Michael Tarasiou 11 Oct 09, 2022