Deep motion transfer

Overview

animation-with-keypoint-mask

Paper

The right most square is the final result. Softmax mask (circles):


\

Heatmap mask:



\

conda env create -f environment.yml
conda activate venv11
We use pytorch 1.7.1 with python 3.8.
Please obtain pretrained keypoint module. You can do so by
git checkout fomm-new-torch
Then, follow the instructions from the README of that branch, or obtain a pre-trained checkpoint from
https://github.com/AliaksandrSiarohin/first-order-model

training

to train a model on specific dataset run:

CUDA_VISIBLE_DEVICES=0,1,2,3 python run.py --config config/dataset_name.yaml --device_ids 0,1,2,3 --checkpoint_with_kp path/to/checkpoint/with/pretrained/kp

E.g. taichi-256-q.yaml for the keypoint heatmap mask model, and taichi-256-softmax-q.yaml for drawn circular keypoints instead.

the code will create a folder in the log directory (each run will create a time-stamped new directory). checkpoints will be saved to this folder. to check the loss values during training see log.txt. you can also check training data reconstructions in the train-vis sub-folder. by default the batch size is tuned to run on 4 titan-x gpu (apart from speed it does not make much difference). You can change the batch size in the train_params in corresponding .yaml file.

evaluation on video reconstruction

To evaluate the reconstruction of the driving video from its first frame, run:

CUDA_VISIBLE_DEVICES=0 python run.py --config config/dataset_name.yaml --mode reconstruction --checkpoint path/to/checkpoint --checkpoint_with_kp path/to/checkpoint/with/pretrained/kp

you will need to specify the path to the checkpoint, the reconstruction sub-folder will be created in the checkpoint folder. the generated video will be stored to this folder, also generated videos will be stored in png subfolder in loss-less '.png' format for evaluation. instructions for computing metrics from the paper can be found: https://github.com/aliaksandrsiarohin/pose-evaluation.

image animation

In order to animate a source image with motion from driving, run:

CUDA_VISIBLE_DEVICES=0 python run.py --config config/dataset_name.yaml --mode animate --checkpoint path/to/checkpoint --checkpoint_with_kp path/to/checkpoint/with/pretrained/kp

you will need to specify the path to the checkpoint, the animation sub-folder will be created in the same folder as the checkpoint. you can find the generated video there and its loss-less version in the png sub-folder. by default video from test set will be randomly paired, but you can specify the "source,driving" pairs in the corresponding .csv files. the path to this file should be specified in corresponding .yaml file in pairs_list setting.

datasets

  1. taichi. follow the instructions in data/taichi-loading or instructions from https://github.com/aliaksandrsiarohin/video-preprocessing.

training on your own dataset

  1. resize all the videos to the same size e.g 256x256, the videos can be in '.gif', '.mp4' or folder with images. we recommend the later, for each video make a separate folder with all the frames in '.png' format. this format is loss-less, and it has better i/o performance.

  2. create a folder data/dataset_name with 2 sub-folders train and test, put training videos in the train and testing in the test.

  3. create a config config/dataset_name.yaml, in dataset_params specify the root dir the root_dir: data/dataset_name. also adjust the number of epoch in train_params.

additional notes

citation:

@misc{toledano2021,
  author = {Or Toledano and Yanir Marmor and Dov Gertz},
  title = {Image Animation with Keypoint Mask},
  year = {2021},
  eprint={2112.10457},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

Old format (before paper):

@misc{toledano2021,
  author = {Or Toledano and Yanir Marmor and Dov Gertz},
  title = {Image Animation with Keypoint Mask},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/or-toledano/animation-with-keypoint-mask}},
  commit = {015b1f2d466658141c41ea67d7356790b5cded40}
}
Official PyTorch implementation of "IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos", CVPRW 2021

IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos Introduction This repo is official PyTorch implementatio

Gyeongsik Moon 29 Sep 24, 2022
System Design course at HSE (2021)

System Design course at HSE (2021) Wiki-страница курса Структура репозитория: slides - директория с презентациями с занятий tasks - материалы для выпо

22 Dec 25, 2022
PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Representation

How to Reproduce our Results This repository contains PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Represen

opcrisis 46 Dec 15, 2022
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
Jarvis Project is a basic virtual assistant that uses TensorFlow for learning.

Jarvis_proyect Jarvis Project is a basic virtual assistant that uses TensorFlow for learning. Latest version 0.1 Features: Good morning protocol Tell

Anze Kovac 3 Aug 31, 2022
A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

Eugenio Herrera 175 Dec 29, 2022
Parameterising Simulated Annealing for the Travelling Salesman Problem

Parameterising Simulated Annealing for the Travelling Salesman Problem

Gary Sun 55 Jun 15, 2022
Existing Literature about Machine Unlearning

Machine Unlearning Papers 2021 Brophy and Lowd. Machine Unlearning for Random Forests. In ICML 2021. Bourtoule et al. Machine Unlearning. In IEEE Symp

Jonathan Brophy 213 Jan 08, 2023
RealTime Emotion Recognizer for Machine Learning Study Jam's demo

Emotion recognizer Table of contents Clone project Dataset Install dependencies Main program Demo 1. Clone project git clone https://github.com/GDSC20

Google Developer Student Club - UIT 1 Oct 05, 2021
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
A collection of resources and papers on Diffusion Models, a darkhorse in the field of Generative Models

This repository contains a collection of resources and papers on Diffusion Models and Score-based Models. If there are any missing valuable resources

5.1k Jan 08, 2023
JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation

JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation This the repository for this paper. Find extensions of this w

Zhuoyuan Mao 14 Oct 26, 2022
Fast and simple implementation of RL algorithms, designed to run fully on GPU.

RSL RL Fast and simple implementation of RL algorithms, designed to run fully on GPU. This code is an evolution of rl-pytorch provided with NVIDIA's I

Robotic Systems Lab - Legged Robotics at ETH Zürich 68 Dec 29, 2022
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

Katsuya Hyodo 8 Oct 03, 2022
Simultaneous NMT/MMT framework in PyTorch

This repository includes the codes, the experiment configurations and the scripts to prepare/download data for the Simultaneous Machine Translation wi

<a href=[email protected]"> 37 Sep 29, 2022
NAACL2021 - COIL Contextualized Lexical Retriever

COIL Repo for our NAACL paper, COIL: Revisit Exact Lexical Match in Information Retrieval with Contextualized Inverted List. The code covers learning

Luyu Gao 108 Dec 31, 2022
An 16kHz implementation of HiFi-GAN for soft-vc.

HiFi-GAN An 16kHz implementation of HiFi-GAN for soft-vc. Relevant links: Official HiFi-GAN repo HiFi-GAN paper Soft-VC repo Soft-VC paper Example Usa

Benjamin van Niekerk 42 Dec 27, 2022