Deep motion transfer

Overview

animation-with-keypoint-mask

Paper

The right most square is the final result. Softmax mask (circles):


\

Heatmap mask:



\

conda env create -f environment.yml
conda activate venv11
We use pytorch 1.7.1 with python 3.8.
Please obtain pretrained keypoint module. You can do so by
git checkout fomm-new-torch
Then, follow the instructions from the README of that branch, or obtain a pre-trained checkpoint from
https://github.com/AliaksandrSiarohin/first-order-model

training

to train a model on specific dataset run:

CUDA_VISIBLE_DEVICES=0,1,2,3 python run.py --config config/dataset_name.yaml --device_ids 0,1,2,3 --checkpoint_with_kp path/to/checkpoint/with/pretrained/kp

E.g. taichi-256-q.yaml for the keypoint heatmap mask model, and taichi-256-softmax-q.yaml for drawn circular keypoints instead.

the code will create a folder in the log directory (each run will create a time-stamped new directory). checkpoints will be saved to this folder. to check the loss values during training see log.txt. you can also check training data reconstructions in the train-vis sub-folder. by default the batch size is tuned to run on 4 titan-x gpu (apart from speed it does not make much difference). You can change the batch size in the train_params in corresponding .yaml file.

evaluation on video reconstruction

To evaluate the reconstruction of the driving video from its first frame, run:

CUDA_VISIBLE_DEVICES=0 python run.py --config config/dataset_name.yaml --mode reconstruction --checkpoint path/to/checkpoint --checkpoint_with_kp path/to/checkpoint/with/pretrained/kp

you will need to specify the path to the checkpoint, the reconstruction sub-folder will be created in the checkpoint folder. the generated video will be stored to this folder, also generated videos will be stored in png subfolder in loss-less '.png' format for evaluation. instructions for computing metrics from the paper can be found: https://github.com/aliaksandrsiarohin/pose-evaluation.

image animation

In order to animate a source image with motion from driving, run:

CUDA_VISIBLE_DEVICES=0 python run.py --config config/dataset_name.yaml --mode animate --checkpoint path/to/checkpoint --checkpoint_with_kp path/to/checkpoint/with/pretrained/kp

you will need to specify the path to the checkpoint, the animation sub-folder will be created in the same folder as the checkpoint. you can find the generated video there and its loss-less version in the png sub-folder. by default video from test set will be randomly paired, but you can specify the "source,driving" pairs in the corresponding .csv files. the path to this file should be specified in corresponding .yaml file in pairs_list setting.

datasets

  1. taichi. follow the instructions in data/taichi-loading or instructions from https://github.com/aliaksandrsiarohin/video-preprocessing.

training on your own dataset

  1. resize all the videos to the same size e.g 256x256, the videos can be in '.gif', '.mp4' or folder with images. we recommend the later, for each video make a separate folder with all the frames in '.png' format. this format is loss-less, and it has better i/o performance.

  2. create a folder data/dataset_name with 2 sub-folders train and test, put training videos in the train and testing in the test.

  3. create a config config/dataset_name.yaml, in dataset_params specify the root dir the root_dir: data/dataset_name. also adjust the number of epoch in train_params.

additional notes

citation:

@misc{toledano2021,
  author = {Or Toledano and Yanir Marmor and Dov Gertz},
  title = {Image Animation with Keypoint Mask},
  year = {2021},
  eprint={2112.10457},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

Old format (before paper):

@misc{toledano2021,
  author = {Or Toledano and Yanir Marmor and Dov Gertz},
  title = {Image Animation with Keypoint Mask},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/or-toledano/animation-with-keypoint-mask}},
  commit = {015b1f2d466658141c41ea67d7356790b5cded40}
}
DNA sequence classification by Deep Neural Network

DNA sequence classification by Deep Neural Network: Project Overview worked on the DNA sequence classification problem where the input is the DNA sequ

Mohammed Jawwadul Islam Fida 0 Aug 02, 2022
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

cmc 6 Dec 04, 2022
Ensembling Off-the-shelf Models for GAN Training

Data-Efficient GANs with DiffAugment project | paper | datasets | video | slides Generated using only 100 images of Obama, grumpy cats, pandas, the Br

MIT HAN Lab 1.2k Dec 26, 2022
Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script.

clip-text-decoder Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script. Example Predi

Frank Odom 36 Dec 21, 2022
Graph-based community clustering approach to extract protein domains from a predicted aligned error matrix

Using a predicted aligned error matrix corresponding to an AlphaFold2 model , returns a series of lists of residue indices, where each list corresponds to a set of residues clustering together into a

Tristan Croll 24 Nov 23, 2022
implement of SwiftNet:Real-time Video Object Segmentation

SwiftNet The official PyTorch implementation of SwiftNet:Real-time Video Object Segmentation, which has been accepted by CVPR2021. Requirements Python

haochen wang 64 Dec 14, 2022
Simple and Distributed Machine Learning

Synapse Machine Learning SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. Sy

Microsoft 3.9k Dec 30, 2022
Reference models and tools for Cloud TPUs.

Cloud TPUs This repository is a collection of reference models and tools used with Cloud TPUs. The fastest way to get started training a model on a Cl

5k Jan 05, 2023
implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks

YOLOR implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks To reproduce the results in the paper, please us

Kin-Yiu, Wong 1.8k Jan 04, 2023
Extracting knowledge graphs from language models as a diagnostic benchmark of model performance.

Interpreting Language Models Through Knowledge Graph Extraction Idea: How do we interpret what a language model learns at various stages of training?

EPFL Machine Learning and Optimization Laboratory 9 Oct 25, 2022
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation

Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation Paper Multi-Target Adversarial Frameworks for Domain Adaptation in

Valeo.ai 20 Jun 21, 2022
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex

139 Jan 01, 2023
Code for CVPR2019 Towards Natural and Accurate Future Motion Prediction of Humans and Animals

Motion prediction with Hierarchical Motion Recurrent Network Introduction This work concerns motion prediction of articulate objects such as human, fi

Shuang Wu 85 Dec 11, 2022
Self-supervised Multi-modal Hybrid Fusion Network for Brain Tumor Segmentation

JBHI-Pytorch This repository contains a reference implementation of the algorithms described in our paper "Self-supervised Multi-modal Hybrid Fusion N

FeiyiFANG 5 Dec 13, 2021
Python package to generate image embeddings with CLIP without PyTorch/TensorFlow

imgbeddings A Python package to generate embedding vectors from images, using OpenAI's robust CLIP model via Hugging Face transformers. These image em

Max Woolf 81 Jan 04, 2023
PyTorch implementation of: Michieli U. and Zanuttigh P., "Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations", CVPR 2021.

Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations This is the official PyTorch implementation

Multimedia Technology and Telecommunication Lab 42 Nov 09, 2022
Fuzzy Overclustering (FOC)

Fuzzy Overclustering (FOC) In real-world datasets, we need consistent annotations between annotators to give a certain ground-truth label. However, in

2 Nov 08, 2022
FairMOT for Multi-Class MOT using YOLOX as Detector

FairMOT-X Project Overview FairMOT-X is a multi-class multi object tracker, which has been tailored for training on the BDD100K MOT Dataset. It makes

Jonathan Tan 33 Dec 28, 2022
Pixray is an image generation system

Pixray is an image generation system

pixray 883 Jan 07, 2023